Какими способами может осуществляться осветление воды

Осветление воды: все, что вы хотели знать об этом процессе

Осветление воды: все, что вы хотели знать об этом процессе

Осветление воды – это удаление из нее взвешенных веществ, которые изменяют цвет воды или делают ее непрозрачной. Необходимость и степень такой очистки зависит от целей последующего использования жидкости.

Из этой статьи вы узнаете:

На каком этапе очистки воды происходит ее осветление

Какие методы осветления воды существуют

Какие фильтровые установки для осветления воды бывают

На каком этапе очистки происходит осветление сточных вод

Мы каждый день пользуемся водой, но почти никогда не задумываемся над тем, что происходит с ней после. Сточная вода представляет собой мутную жидкость, содержащую большое количество примесей, в том числе и вредных, обычно имеющую неприятный запах. Такая вода вовсе не пригодна для питья, хозяйственно-бытовых и производственных нужд. В настоящее время существует множество методов обработки сточных вод с целью их эффективной очистки. Очищенная вода может вновь использоваться человеком.

Как правило, на первом этапе очистки, сточная жидкость отстаивается, а затем фильтруется. Обычно фильтрация состоит из нескольких этапов. Сначала проводят фильтрацию грубой очистки, после чего используются методы осветления воды. На последнем этапе используют специальные фильтры осветления воды. Материал таких фильтров должен быть определенной высоты, отличаться высокой прочностью, не истираться, не быть слишком легким.

В качестве материала для фильтров на данном этапе процесса осветления сточных вод применяют измельченный керамзит или гидроантрацит. Иногда используют системы двухслойного и трехслойного фильтрования: в этом случае сверху засыпается слой с более крупными частицами, а снизу – с более мелкими.

Методы осветления воды

В зависимости от требуемой степени очистки могут применяться разные методы осветления воды. К ним относятся те, что основаны на использовании различных физико-химических процессов. Так, например, очистка от твердых взвешенных частиц осуществляется путем отстаивания. Кроме того, очистить воду можно с помощью сетчатых фильтров, осветлительного и сорбционного фильтрования, а также посредством гидроциклонирования, флотации, коагуляции и флокуляции.

Хлорирование воды

Традиционно наиболее распространенным из всех ныне существующих способов обеззараживания воды, вследствие дешевизны и доступности, является ее хлорирование. Для этого применяют газообразный хлор (в баллонах), хлорную известь, гипохлорит кальция, хлорамин.

Бактерицидный эффект хлорирования достигается за счет:

Антимикробных свойств хлора.

Антимикробных свойств атомарного кислорода (О), который образуется при разложении хлорноватистой кислоты, образующейся при взаимодействии хлора с водой.

Эффект от хлорирования зависит от:

Активности применяемых веществ. Самой большой активностью обладает хлор, далее следует хлорная известь, еще слабее – другие реагенты. Активность хлорной извести тоже неодинаковая и тем больше, чем выше процент содержания в ней активного хлора (25–35 %);

Чистоты хлорируемой воды. Во-первых, хлор расходуется на окисление органических веществ, находящихся в воде, во-вторых, взвешенные в воде частицы препятствуют действию хлора. Поэтому чем выше качество воды, тем больше эффект от ее хлорирования.

Дозы хлора и времени его действия.

Свойств самих микроорганизмов и др.

Известно несколько технологий хлорирования. На водопроводных станциях обычно применяют нормальное постхлорирование газообразным хлором.

Хлорирование воды имеет и свои недостатки:

Меняется запах, вкус и прозрачность воды (органолептические свойства).

Уничтожаются не все микроорганизмы, например, спорообразующие микробы.

Отстаивание

Методом отстаивания воду очищают только от крупных включений, поперечный размер которых 0,1–0,01 мм. Для удаления более мелких частиц в процессе осветления воды нужно проводить коагулирование.

Статьи, рекомендуемые к прочтению:

Многие очистные станции оборудованы отстойниками воды. Как правило, последние выполнены в виде бассейнов, в которых медленно и непрерывно движется вода. Попадая из трубы в широкое русло бассейна, вода замедляет скорость своего потока от 1 м/с до нескольких миллиметров в секунду.

При таком резком замедлении взвесь выпадает в осадок почти с такой же скоростью, что и в неподвижной воде. В процессе отстаивания некоторые мелкие частицы укрупняются и тоже оседают на дно. В зависимости от конструкции отстойника, в частности, от направления движения воды в нем, он бывает горизонтальным или вертикальным.

Горизонтальные отстойники строят в виде прямоугольных, вытянутых по направлению движения воды резервуаров, которые оснащены устройством, создающим в воде ламинарный поток. Дно емкости наклонено ко входу. Для сбора осадка в начале резервуара на дне имеется приямок. Осветляемая вода поступает в резервуар с одной из сторон отстойника, а выходит с другой, проходя через перегородку с отверстиями.

Резервуар отстойника, как правило, разбит на ряд параллельных коридоров, ширина которых примерно 6 м. Величина скорости потока воды в них как правило в пределах 2–4 мм/с. Скорость частицы в потоке равна суперпозиции двух взаимно перпендикулярных составляющих: скорости выпадения в осадок, направленной вертикально вниз, и скорости горизонтального ламинарного потока.

В зависимости от соотношения модулей этих составляющих частица за время прохождения бассейна ложится на дно или выносится из отстойника.

Вертикальный отстойник представляет собой цилиндрическую (кубическую) емкость с конической (пирамидальной) нижней частью. В центре емкости проходит коаксиальная труба, в которую сверху поступает осветляемая вода. Пройдя по центральной трубе вниз, осветляемая вода попадает в кольцевое пространство резервуара, в так называемую зону осаждения.

Процесс осветления воды проходит во время ее движения снизу вверх с небольшой скоростью (порядка 0,4–0,6 мм/с) по всему кольцевому пространству. Дойдя до самого верха емкости отстойника, частично очищенная от взвеси (осветленная) вода отводится из резервуара, при этом собирающийся в нижней части отстойника осадок периодически удаляется. Время полного прохождения водой отстойника составляет, в зависимости от размеров емкости, от 4 до 8 часов.

Достоинством отстойников вертикальной конструкции является небольшая площадь, занимаемая ими. А недостатками – медленный процесс осветления воды и большие высоты емкостей, необходимые для увеличения времени осаждения. К минусам вертикальных отстойников можно также причислить и то, что мелкие частицы в них не успевает осесть, а коллоидные вещества вовсе не образуются.

В полевых условиях, при длительной дислокации контингента в определенном месте, в качестве отстойников часто используют небольшие запруды либо искусственные водохранилища, сообщающиеся с рекой. При долговременном отстаивании воды в природных условиях наряду с увеличением прозрачности отмечается снижение цветности, а также уменьшение количества микробов на 75–90 % по Хлопину.

Коагулирование

К методам осветления воды относится и коагуляция, суть которой заключается в образовании хлопьев при свертывании веществ, находящихся воде в коллоидном состоянии. Такой способ осветления используют в целях уменьшения мутности воды и изменения ее цвета. Проводят коагуляцию с использованием специальных химических веществ (коагулянтов): соль алюминия – Аl2(SО4)3 × 18Н2О, сернокислое железо – FeSO4 × 7Н2О, хлорное железо – FеСl3 × 6Н2О.

Сточные воды после грубой фильтрации и отстаивания, как правило, имеют высокие показатели цветности и мутности, представляя собой взвешенную систему из электролита, коллоидных частиц и грубодисперсных примесей. Коагулянты, после их растворения в такой полидисперсной смеси, подвергаются гидролизу. В итоге в воде образуются хлопья плохо растворимых гидратов, окисей и углекислый газ:

При взаимодействии положительно заряженного коллоида гидрата окиси алюминия с анионами коллоида воды происходит укрупнение коллоидных частиц и последующее их выпадение в осадок в виде хлопьев.

Хлопья коагулянта, рыхлые по своей структуре, имеют весьма большую активную поверхность (несколько десятков квадратных метров на 1 г осадка). На этой поверхности сорбируются коллоидные частицы. Они медленно оседают на дно, захватывая при этом и более грубые взвеси. Таким образом, происходит процесс осветления воды.

Скорость коагуляции зависит от температуры воды, интенсивности ее смешивания, числа грубых включений в воде, активной реакции и ее щелочности.

Для различных составов осветляемой воды следует подбирать свою дозу коагулянта.

Ускорить процесс можно посредством флоккулянтов – высокомолекулярных синтетических соединений.

Фильтрование воды

С помощью фильтров воду очищают от взвешенных частиц, придающих ей мутность. При этом в фильтре частично оседают микроорганизмы, а также отдельные ядовитые и радиоактивные вещества. В итоге снижаются цветность и окисляемость жидкости.

По скорости фильтрования различают: медленные (от 0,1 до 0,3 м/ч) и скорые фильтры (от 5 до 10 м/ч).

Фильтры делят в зависимости: от направления фильтруемого потока воды – на однопоточные и двухпоточные; от числа фильтрующих слоев – на однослойные и двухслойные.

Для удаления из воды механических примесей, кроме сетчатых, используются также и фильтры с зернистой загрузкой. Они представляют собой устройства в виде емкости с фильтрующими материалами, которые должны быть химически стойкими к обрабатываемой жидкости, механически прочными и не должны загрязнять ее. Для этих целей обычно используют кварцевый песок, крошку из керамики, опилки, коксовую крошку, керамзит, дробленый антрацит.

Двухслойные фильтры, кроме основного фильтрующего слоя, имеют так называемый поддерживающий, который задерживает мелкий фильтрующий материал и не дает потоку воды его разрушить. Поддерживающий слой состоит из гравия или щебня разного размера, постепенно увеличивающегося сверху вниз от 2 до 40 мм.

В настоящее время есть два принципиально разных метода осветления воды фильтрованием. Один из них – пленочное адгезионное фильтрование. При этом осветление воды и удержание дисперсных примесей происходит на поверхности фильтрующего слоя. Пленка формируется вследствие малой скорости фильтрации, большой мутности воды и значительного содержания живых микроорганизмов (биологическая пленка). При адгезионном фильтровании взвешенные в воде вещества задерживаются поверхностью зерен (налипают на нее) всего фильтрующего материала.

Биологическая пленка играет главную роль в действии медленных фильтров. Наряду со взвесями, пленка задерживает еще и бактерии, понижая их количество на 95–99 %. Также биологическая пленка снижает окисляемость (на 20–45 %) и цветность (на 20 %) воды. Медленные фильтры отличаются простотой устройства и эксплуатации. Их первыми применили в качестве очистных сооружений в городах. В дальнейшем, из-за увеличения объемов использования воды они были заменены скорыми фильтрами с большей производительностью, что важно в условиях современного мегаполиса.

Фильтровые установки для осветления воды

Осадочные фильтры используют для очистки воды от таких включений, как железо, ржавчина, песок, окалина и т. п. Данные фильтры применяют как для небольших, так и для крупных промышленных станций.

Осветлительный фильтр

Проходя через зернистую структуру фильтра, вода, освобождаясь от содержащихся в ней взвешенных частиц, осветляется. Производительность этого процесса зависит от физико-химических свойств примесей, особенностей фильтрующих материалов и гидродинамических характеристик фильтра.

Фильтрация воды происходит в результате двух контрадикторных процессов – адгезии и суффозии. При движении воды сквозь фильтр находящиеся в ней твердые частицы контактируют с зернами загрузки и закрепляются на них (адгезия). В дальнейшем, под напором воды, определенная часть уже прилипших частиц отрывается от зерен фильтра и переносится в последующие слои фильтра (суффозия). Там они снова задерживается в каналах фильтрующего материала.

Осветление воды при фильтрации происходит, когда скорость прилипания частиц превышает скорость их отрыва. Результативность этого процесса тем выше, чем больше такое превышение.

Осадочный фильтр

По мере насыщения верхних слоев загрузки, зона фильтрации перемещается по направлению потока от верхних слоев фильтра, где преобладает процесс суффозии, к нижним слоям со свежей загрузкой – здесь происходит, в основном, адгезия.

Период, в течение которого фильтр обеспечивает требуемую степень осветления воды, называется временем защитного действия загрузки, а этап, в течение которого потери напора в загрузке возрастают до максимально возможного для данного фильтра значения, называется временем достижения предельной потери напора. Оптимальным с технико-экономической точки зрения режимом работы фильтра считается тот, когда значения обоих периодов примерно равны.

При достижении предельного напора или ухудшении степени осветления воды требуется регенерация фильтра. Для этого его переводят в режим взрыхляющей промывки, когда загрузка промывается обратным потоком воды, а загрязнения сбрасываются в дренаж.

Если вы хотите приобрести установку для осветления воды, мы готовы вам помочь.

На российском рынке присутствует немало компаний, которые занимаются разработкой систем водоочистки. Самостоятельно, без помощи профессионала, выбрать тот или иной вид фильтра воды довольно сложно. И уж тем более не стоит пытаться смонтировать систему водоочистки самостоятельно, даже если вы прочитали несколько статей в Интернете и вам кажется, что вы во всем разобрались.

Надежнее обратиться в компанию по установке фильтров, которая предоставляет полный спектр услуг – консультацию специалиста, анализ воды из скважины или колодца, подбор подходящего оборудования, доставку и подключение системы. Кроме того, важно, чтобы компания предоставляла и сервисное обслуживание фильтров.

Компания Biokit предлагает широкий выбор систем обратного осмоса, фильтры для воды и другое оборудование, способное вернуть воде из-под крана ее естественные характеристики.

Специалисты нашей компании готовы помочь вам:

Выбрать фильтр для воды.

Подключить систему фильтрации.

Подобрать сменные материалы.

Устранить неполадки в работе оборудования.

Дать телефонную консультацию по интересующим вопросам.

Доверьте очистку воды профессионалам компании «Biokit», которые заботятся о вашем здоровье.

Осветление и обесцвечивание воды

Осветление воды. Осветление воды как уже отмечалось, проводится для удаления из воды взвешенных частиц (устранение мутности воды) при непрерывном движении ее при малых скоростях через специальные сооружения (отстойники, фильтры).

Мутность воды обусловлена наличием в ней механических взвешенных частиц: глинистых, песчаных, илистых и др. Мутность свойственна, в основном, поверхностным водам (как правило, речным). Чем мельче механические частицы, тем больше мутность воды; кроме того, чем больше скорость движения воды в реке, тем все более крупные частицы увлекаются водой. При определенных скоростях движения воды частицы грунта могут находиться во взвешенном состоянии. В этом случае возникает необходимость избавления от мутности воды с целью ее осветления.

Осветление воды может быть осуществлено путем ее отстаивания и последующего пропуска через специальные фильтры.

Отстаивание воды заключается в пропускании ее через отстойники при весьма малых скоростях. Заметим, что одним из простых способов отстаивания воды являются ковши; однако, полного избавления от механических взвесей в них, как правило, не достигается. При большой крупности механических частиц осветление воды может быть достигнуто прямым отстаиванием ее в специальных отстойниках довольно быстро (в течение нескольких часов). Если же в воде содержатся тонкодисперсные частицы (например, пылеватые или глинистые), то удаление их путем отстаивания в приемлемые сроки практически невозможно (время отстаивания воды может составить несколько месяцев). А санитарные требования весьма жестки: в воде не должно содержаться взвешенных частиц более 1мг/л.

Для ускорения осветления воды широко привлекается коагулирование отстаиваемой воды. Коллоидные глинистые частицы естественной мути имеют отрицательный электрический заряд и взаимно отталкиваются. При введении коагулянта в воде искусственно создается коллоидное вещество с положительно заряженными частицами. При взаимодействии с отрицательно заряженными частицами мути происходит нейтрализация их зарядов – частицы взаимно притягиваются, укрупняются и относительно быстро выпадают из воды в осадок.

Читайте также:  Монтаж глубинного насоса в скважину

В качестве коагулянтов наиболее часто используют сернокислый алюминий Al(SO4)3, иногда железный купорос FeSO4 и хлорное железо FeCl3. Так, при введении в воду Al(SO4)3 происходит ее диссоциация:

Далее происходит катионный обмен между Al 3+ и катионами на глинистых частицах. Избыток же ионов Al 3+ в результате гидролиза приводит к образованию выпадающего в осадок Al(OH)3:

Образовавшееся положительно заряженное коллоидное вещество Al(OH)3 и обусловливает процесс коагулирования. Процесс коагуляции требует определенной щелочности воды; если она мала, то воду специально подщелачивают путем добавления в нее извести или соды.

Из опыта осветления воды доза Al(SO4)3 для рек России составляет от 60мг/л (для северных рек) до 100-120 мг/л (для южных рек с большей мутностью).

Привлечение коагулирования требует устройства на очистной станции специальных отстойников.

Горизонтальныйотстойник используется на водозаборах с большой производительностью (более 50-60 тыс. м 3 /сут). Эти отстойники устраивают в виде заглубленных в землю железобетонных бассейнов (из 2-3 параллельных камер) с уклоном, обратным ходу воды; при этом скорость движения воды в них должна обеспечивать выпадение в пределах отстойника взвешенных частиц.

Обычно скорость выпадения частиц при коагулировании составляет = 0.5-0.6 мм/сек, а скорость движения воды в отстойнике принимается равной v = 5-6 мм/сек, т.е. примерно в 10 раз больше.

По заданной производительности отстойника и принятой величине v определяют габариты отстойника: площадь, ширину, длину. В практике подобных сооружений высоту зоны осаждения отстойника принимают равной H = 3-5 м [1].

Длину отстойника можно определить по формуле:

, (38)

С учетом соотношения скоростей потока v и осаждения , можно принять, что L/H

Площадь отстойника в плане:

(39)

Принимая во внимание, что площадь поперечного сечения отстойника будет , получим:

(40)

Нижняя часть отстойника – зона накопления и уплотнения осадка рассчитывается на прием осадка, выпадающего за период между чистками отстойника.

Вертикальные отстойники обычно применяют на водопроводах с производительностью менее 40 тыс.м 3 /сут и представляют собой резервуары цилиндрической формы; в них очищаемая вода движется вертикально снизу-вверх. Высота отстойника H принимается равной 4-5 м, отношение диаметра отстойника к его высоте составляет 1.5-2.

В практике хозяйственно-питьевого водоснабжения на базе речных вод после отстаивания воды обычно применяется ее фильтрование. Основная задача этого процесса заключается в доводке осветления воды до степени, соответствующей требованиям ГОСТа.

При фильтровании воду пропускают через слой фильтрующего материала, задерживающего взвешенные в ней вещества. В качестве фильтрующего материала чаще всего привлекают мелкий кварцевый (речной) песок, иногда – дробленый антрацит.

Обесцвечивание воды.Цветность воды обусловлена присутствием в ней гумусовых веществ, находящихся в коллоидном состоянии и придающих воде желтоватый, коричневый или зеленый цвета. Цветностью обладают воды рек, вытекающих из болот и торфяников, а также воды ряда водохранилищ. Цветность питьевой воды (по ГОСТу) не должна превышать 20 градусов (по платинокобальтовой шкале).

В процессе осветления, как правило, достигается и обесцвечивание воды; если этого нет, то из положения выходят путем увеличения дозы того же коагулянта, который привлекается и для осветления воды.

Обеззараживание воды

Этот метод очистки проводится с целью уничтожения в воде болезнетворных бактерий, вызывающих такие опасные заболевания, как холера, паратиф, брюшной тиф, дизентерия и др. Обеззараживание воды осуществляется на всех очистных станциях, если имеется вероятность загрязнения природных вод поверхностными стоками. Проблема эта весьма актуальна для г. Санкт-Петербурга. Основной водозабор города находится ниже впадения в реку Неву ее притока Охты, которая весьма загрязнена химическими и органическими стоками.

Отстаивание и фильтрование воды не дают гарантий удаления микроорганизмов. Для окончательной очистки воды используют обеззараживание. Как правило, обеззараживанию подвергаются воды, уже прошедшие отстаивание и фильтрование. Для обеззараживания воды используют следующие методы: кипячение, обработка ультрафиолетовыми лучами, хлорирование и озонирование.

Кипячение воды (термическая обработка). Используется для обеззараживания малых количеств воды (обычно для индивидуального водоснабжения).

Ультрафиолетовые лучи. Бактерицидные лучи с длиной волны 2000-2950 А 0 “убивают” болезнетворные бактерии. Источником бактерицидных лучей являются ртутно-кварцевые лампы высокого давления или ртутно-аргоновые лампы низкого давления.

Хлорирование воды. Хлорирование воды для обеззараживания получило наибольшее распространение. В большинстве случаев оно осуществляется жидким хлором или хлорной известью. При введении хлора в воду в результате гидролиза в ней образуется хлорноватистая и соляная кислоты:

Хлороватистая кислота HOCl – вещество неустойчивое и диссоциирует с образованием гипохлоритного иона и водорода:

Образующиеся гипохлоритные ионы, наряду с недиссоциированными молекулами хлорноватистой кислоты, оказывают окислительные (бактерицидные) действия на микроорганизмы.

Необходимую дозу активного хлора устанавливают опытным путем на основе лабораторных данных о хлоропоглощаемости воды. Ориентировочно ее принимают для профильтрованной воды 0.5–1 мг/л, а для исходной неочищенной воды из поверхностных источников – до 5 мг/л.

Продолжительность контакта хлора с водой должна быть не менее 30 минут при условии интенсивного предварительного перемешивания; после 30-ти минутного контакта такая вода может быть направлена потребителю.

Более правильно назначать дозу хлора по «остаточному» хлору, количество которого должно быть в пределах 0.3–0.5 мг/л. При такой величине «остаточного» хлора может быть гарантирована полная дезинфекция воды. Дозу хлора определяют из такого расчета, чтобы в 1 литре очищенной воды оставалось еще 0.3–0.5 мг хлора, не вступившего в реакцию. Это и является контролем над качеством дезинфекции воды.

Степень диссоциации хлорноватистой кислоты зависит от pH воды, чем меньше pH – тем лучше результаты хлорирования.

Хлорирование воды хлорной известью (3 CaOCl2CaO×4H2O) используется на водопроводах небольшой производительности (до 3 тыс. м 3 /сут). Известь распадается на гипохлорит кальция Ca(OCl)2 и хлористый кальций. В результате реакции гипохлорита кальция с находящейся в воде углекислотой или бикарбонатом кальция образуется, как и при хлорировании воды жидким хлором, хлорноватистая кислота HOCl, которая диссоциирует с образованием гипохлоритного иона OСl – .

Озонирование воды. В последнее все более широкое распространение приобретает обеззараживания воды путем ее озонирования. Озонирование заключается в пропускании через воду озонированного воздуха, в котором кислород частично переведен в трехатомную форму (О3).

Озон является сильным окислителем и обладает прекрасными бактерицидными свойствами и обеспечивает надежную дезинфекцию воды.

Преимущество озонирования воды перед хлорированием заключается в том, что озон получается непосредственно на станции очистки воды, он не ухудшает видовых качеств воды, не ведет к появлению в воде запахов.

Кроме того, под действием озона одновременно с обеззараживанием происходит и обесцвечивание воды, а также устраняются нежелательные запахи и привкусы. Недостатком озонирования является то обстоятельство, что озон действует на воду мгновенно, и быстро из нее уходит, не обеспечивая обеззараживающего эффекта на всем пути от водопроводной станции до потребителя. Озон получают из атмосферного воздуха в специальных аппаратах, называемых озонаторами. Воздух предварительно охлаждается, пропускается через фильтры и обезвоживается.

При прохождении переменного электрического тока (напряжением 8000-10000 вольт) через разрядное пространство, заполненное воздухом, происходит разряд коронного типа, в результате которого и образуется озон.

Доза озона для обеззараживания фильтрованной воды составляет 1-3 мг/л, для очистки подземных вод – 0.75-1.0 мг/л. Если требуется еще и обесцвечивание воды, то доза озона увеличивается до 4 мг/л. Время контакта воды с озоном составляет 5-10 минут.

Умягчение воды

Процесс умягчения связан с понижением жесткости воды, обусловленной присутствием в ней солей кальция и магния. Обычно повышенная жесткость воды характерна для подземных вод; поверхностные же воды, как правило, характеризуются малой жесткостью. Различают карбонатную жесткость (соли Ca(HCO3)2 и Mg(HCO3)2) и некарбонатную жесткость ( соли CaCl2, MgCl2, CaSO4 и MgSO4). Суммарная жесткость называется общей жесткостью. По ГОСТу общая жесткость воды, используемой для хозпитьевого водоснабжения, не должна превышать 7 мг-экв/л [7]. В то же время для некоторых производственных нужд требуется очень мягкая вода; например, вода для питания паровых котлов не должна превышать 0.1-0.07 мг-экв/л.

На водопроводных станциях используются различные способы уменьшения жесткости воды; привлечение их диктуется требованиями к мягкости воды и экономическими соображениями. Наиболее распространенными являются реагентные методы и метод катионного умягчения воды.

Реагентные методы (методы осаждения) Суть этих методов заключается в том, что в воду вводятся определенные химические вещества, которые переводят ионы кальция и магния в малорастворимые и легко удаляемые соединения (например, в карбонат кальция (СаСО3) или гидроксид магния (MgO)).

Из реагентных методов наиболее широко используется известково-содовый способ умягчения воды. Суть его заключается в том, что первоначально в воду вводится известь, которая вызывает протекание следующих реакций:

т.е происходит перевод солей из магниевой жесткости в кальциевую. Заметим, что на этой стадии очистки воды величина жесткости практически не меняется. Поэтому для окончательного снижения жесткости воды на втором этапе в воду вводится сода и химическая реакция протекает уже по схеме:

Известково-содовым способом жесткость воды может быть снижена до величины 1 мг-экв/л. Заметим, что скорость процесса умягчения воды заметно возрастает при попутном ее подогреве.

Катионное умягчение воды. Метод основан на способности некоторых веществ (катионитов) обменивать катионы, содержащиеся в них (Na + и Н + ) на катионы солей жесткости, находящихся в воде (Са 2+ и Мg 2+ ). Процесс управляется законами диффузии и действия масс (эквивалентный обмен).

В качестве катионитов на станциях очистки воды используются только искусственно полученные материалы – сульфоуголь и ионнообменные смолы. Хотя, в принципе, могут быть и природные материалы, такие, как глауконитовые пески.

Сульфоуголь получается путем обработки концентрированной серной кислотой коксующихся плавких углей. По виду сульфоуголь – гранулы неправильной формы размером 0.25 – 1.25 мм. Обменная способность сульфоугля составляет до 200 – 300 мг-экв/л.

Синтетические ионнообменные смолы – иониты – представляют собой высокомолекулярные соединения, состоящие из молекул-гигантов с огромной молекулярной массой. Ионит – твердое, практически нерастворимое в воде вещество, прочное и химически устойчивое. Обменная способность их составляет 800 – 900 мг-экв/л. С помощью смол жесткость может быть снижена до 0.01 мг-экв/л.

Так как в процессе своей работы ионит постепенно расходует содержащиеся в нем катионы Na + (или Н + ) и теряет способность умягчать воду, то требуется периодически проводить регенерацию катионного фильтра. Для восстановления катионов натрия через фильтр (сульфоуголь или ионит) пропускают раствор поваренной соли, а для восстановления ионов водорода – раствор серной кислоты.

Длительность операций по регенерации некоторых катионных фильтров приблизительно 1.5 – 2 часа. Скорость фильтрования при катионном умягчении воды зависит от ее жесткости и определяется расчетом (обычно 5 – 15 м/час).

6. ОСУШИТЕЛЬНАЯ МЕЛИОРАЦИЯ

Слово «мелиорация» происходит от латинского слова melioratiо, что в переводе на русский язык означает улучшение. Мелиорация – это комплекс инженерных мероприятий, направленных на улучшение водно-солевого режима почв и пород территорий, на которых проводятся сельскохозяйственные или строительные работ. Различают осушительную и оросительную мелиорацию

В рамках осушительной мелиорации рассмотрим вопросы, связанные с дренажем городских и промышленных территорий, а также с осушением заболоченных и избыточно увлажненных сельскохозяйственных территорий.

Дата добавления: 2016-12-03 ; просмотров: 4873 | Нарушение авторских прав

Методы очистки воды: осветление воды

Осветление может осуществляться отстаиванием воды в отстойниках, пропуском ее через взвешенный слой осадка в осветлителях и фильтрованием через зернистую загрузку в фильтрах. Для улучшения процесса отстаивания применяют коагулирование, т. е. вводят в воду химические реагенты (коагулянты), которые, взаимодействуя с мельчайшими коллоидными частицами, находящимися вводе, образуют агрегаты слипшихся частиц в виде хлопьев, быстро выпадающих в осадок. Из смесителя вода направляется в камеру хлопьеобразования, а затем поступает в отстойник, где происходит ее осветление.

Камеры хлопьеобразования. В этих камерах происходит образование хлопьев в процессе плавного перемешивания обрабатываемой воды с раствором коагулянта. Камеры хлопьеобразования бывают перегородчатые, лопастные, вихревые и др.

Отстойники. Процесс отстаивания основан на том, что при малых скоростях движения воды взвешенные в ней частицы под действием силы тяжести осаждаются на дно. Осветляемая вода может двигаться в отстойнике в горизонтальном, вертикальном или радиальном направлении.

Осветлители. Условия осветления воды значительно улучшаются при пропуске ее через слой взвешенного осадка. Частицы взвешенного осадка способствуют большему укрупнению хлопьев коагулянта.

Фильтрование воды. Для фильтрования воду пропускают через слой мелкозернистого фильтрующего материала, задерживающего содержащиеся в ней частицы мелкой взвеси. В качестве фильтрующего материала применяют кварцевый песок, гравий, дробленый антрацит и другие материалы.Различают скорые, сверхскоростные и медленные фильтры.

Методы очистки воды: обеззараживание воды

Обеззараживание воды осуществляют с целью уничтожения бактерий, главным образом патогенных. Наиболее распространенными способами обеззараживания являются хлорирование, озонирование и бактерицидное облучение.

Обеззараживание воды по методу хлорирования. Для дозирования хлора служат хлораторы. По принципу работы их делят на вакуумные и напорные. При повышении дозы хлора в воде остается неприятный запах. Такую воду необходимо дехлорировать. Для предотвращения образования хлорфенольного запаха на станциях в воду подают газообразный аммиак.

Обеззараживание воды по методу озонирования. Сущность процесса обеззараживания воды озоном заключается в окислении бактерий атомарным кислородом, образующимся при распаде озона. Озон одновременно уменьшает цветность, запахи и привкусы воды.Озон в виде озоно-воздушной смеси получают в электрических озонаторах из кислорода воздуха.

Бактерицидное облучение воды. Осуществляется с использованием ультрафиолетовых лучей, обладающих бактерицидными свойствами. В качестве источников излучения служат ртутно-кварцевые лампы высокого или низкого давления.

2 Наружная водопроводная сеть

2.1 Системы подачи и распределения воды

Наружная водопроводная сеть транспортирует воду и распределяет ее потребителям.

Водопроводная наружная сеть должна удовлетворять следующим основным требованиям:

– обеспечивать подачу заданного количества и качества воды потребителям под требуемым напором;

– обеспечивать экологическую надежность и бесперебойность снабжения водой потребителей (с учетом перспектив их роста);

Все эти требования достигаются решением следующих основных задач:

– выбором экологически чистого, экономичного и надежного материала труб;

– правильным выполнением гидравлического расчета сети (определение экономически выгодных диаметров труб и потерь напора в сети);

– правильным выбором конфигурации наружной водопроводной сети в плане.

В городах устраивают единый хозяйственно-противопожарный водопровод.

Для транспортирования воды от источников к объектам водоснабжения служат водоводы. Их выполняют из двух или более ниток трубопроводов, укладываемых параллельно друг другу. Для подачи воды непосредственно к местам ее потребления (жилым зданиям, цехам промышленных предприятий) служит водопроводная сеть. При трассировании линий водопроводной сети необходимо учитывать планировку объекта водоснабжения, размещение от­дельных потребителей воды, рельеф местности и т. д.

Читайте также:  Общие положения СП для водоснабжения

По конфигурации в плане различают водопроводные сети раз­ветвленные, или тупиковые (рис. 2.1, а), и кольцевые, или замкнутые (рис. 2.1, б). Разветвленные водопроводные сети выполняют для небольших объектов водоснабжения, допускающих перерывы в снабжении водой. Эти сети целесообразны при сосредоточенном потреблении воды в отдаленных друг от друга точках сети. Кольцевые водопроводные сети выполняют при необходимости бесперебойного водоснабжения, что гарантируется в данном случае возможностью двухстороннего питания водой любого потребителя. Протяженность и стоимость кольцевых сетей больше, чем разветвленных.

В хозяйственно-питьевых и производственных водопроводах, как правило, применяют кольцевые сети вследствие их способности обеспечивать бесперебойную подачу воды. В противопожарных во­допроводах устройство кольцевой сети обязательно.

В водопроводной сети различают магистральные (главные) и распределительные (второстепенные) линии. Расчет проводят только для магистральных линий.

Рис. 2.1. Схемы водопроводных сетей

Наружная водопроводная сеть состоит из:

системы магистральных линий, идущих в направлении движения основных масс воды, транспортирующих воду в районы и кварталы города (диаметры линий рассчитываются);

распределительной сети труб, подающих воду к отдельным домовым ответвлениям и пожарным гидрантам (диаметры труб принимаются по величине пропускаемого пожарного расхода).

В практике водоснабжения используют два основных вида сетей: разветвленные (тупиковые) и кольцевые. Последние представляют собой систему замкнутых контуров или колец.

Однако в отношении надежности и обеспечения бесперебойной подачи воды потребителям эти типы сетей не равноценны. Авария и выключение на ремонт любого участка тупиковой сети ведут к прекращению подачи воды всем потребителям, расположенным ниже места аварии по направлению движения воды.

В кольцевой же сети при аварийной ситуации вода может быть подана в обход по параллельно расположенным линиям. При этом нарушается снабжение водой только тех

потребителей, которые присоединены к выключенному участку.

Кроме того, тупиковая сеть гидравлически несовершенна из-за значительных потерь напора ввиду частой смены диаметров труб. Однако ограниченность ее применения (в небольших поселках, для снабжения водой отдаленных районов города или крупных объектов, находящиеся друг от друга на значительных расстояниях) можно отнести скорее к ее достоинствам, чем к недостаткам.

В соответствии с требованиями, предъявляемыми к надежности сетей водоснабжения, в городах устраивают кольцевые сети.

При трассировке (расположении) магистралей стремятся к тому, чтобы подача воды в отдельные районы города и к отдельным крупным потребителям происходила кратчайшим путем. Трассировку водопроводов начинают только после того, как определено место расположения напорно-регулирующих емкостей. Влияние на выбор трассы магистралей оказывает рельеф местности.

Магистральные линии, по возможности, прокладывают по наиболее возвышенным точкам рельефа, что позволяет обеспечить меньшее давление в трубах. Их прокладывают в две параллельные нитки. Магистральные линии соединены между собой перемычками, которые служат для передачи воды из одной магистрали (при аварии) в другую.

Осветление и обесцвечивание воды

Общие указания

6.9. Воды источников водоснабжения подразделяются:
а) в зависимости от расчетной максимальной мутности (ориентировочно количество взвешенных веществ) на:
маломутные — до 50 мг/л;
средней мутности — св. 50 до 250 мг/л;
мутные — св. 250 до 1500 мг/л;
высокомутные — св. 1500 мг/л;
б) в зависимости от расчетного максимального содержания гумусовых веществ, обусловливающих цветность воды, на:
малоцветные — до 35°;
средней цветности — св. 35 до 120°;
высокой цветности — св. 120°.
Расчетные максимальные значения мутности и цветности для проектирования сооружений станций водоподготовки следует определять по данным анализов воды за период не менее чем за последние три года до выбора источника водоснабжения.

6.10. При выборе сооружений для осветления и обесцвечивания воды рекомендуется руководствоваться указаниями пп. 6.2 и 6.3, а для предварительного выбора — данными табл. 15.

Таблица 15

Основные сооруженияУсловия примененияПроизводительность
Мутность, мг/лЦветность, градстанции,
исходная водаочищенная водаисходная водаочищенная водам3/сут
Обработка воды с применением коагулянтов и флокулянтов
1. Скорые фильтры (одноступенчатое фильтрование):
а) напорные
До 30До 1,5До 50До 20До 5000
б) открытые“ 20“ 1,5“ 50“ 20“ 50000
2. Вертикальные отстойники – скорые фильтры“ 1500“ 1,5“ 120“ 20“ 5000
3. Горизонтальные отстойники – скорые фильтры“ 1500“ 1,5“ 120“ 20Св. 30000
4. Контактные префильтры – скорые фильтры (двухступенчатое фильтрование)“ 300“ 1,5“ 120“ 20Любая
5. Осветлители со взвешенным осадком – скорые фильтрыНе менее 50
до 1500
“ 1,5“ 120“ 20Св. 5000
6. Две ступени отстойников – скорые фильтрыБолее 1500“ 1,5“ 120“ 20Любая
7. Контактные осветлителиДо 120“ 1,5“ 120“ 20
8. Горизонтальные отстойники и осветлители со взвешенным осадком для частичного осветления воды“ 15008 – 15“ 120“ 40
9. Крупнозернистые фильтры для частичного осветления воды“ 80До 10“ 120“ 30
10. Радиальные отстойники для предварительного осветления высокомутных водСв. 1500“ 250“ 120“ 20
11. Трубчатый отстойник и напорный фильтр заводского изготовления (типа “Струя”)До 1000“ 1,5“ 120“ 20До 800
Обработка воды без применения коагулянтов и флокулянтов
12. Крупнозернистые фильтры для частичного осветления водыДо 15030 – 50 %
исходной
До 120Такая же,
как исходная
Любая
13. Радиальные отстойники для частичного осветления водыБолее 150030 – 50 %
исходной
“ 120То же
14. Медленные фильтры с механической или гидравлической регенерацией пескаДо 15001,5“ 50До 20

Примечания: 1. Мутность указана суммарная, включая образующуюся от введения реагентов.
2. На водозаборных сооружениях или на станции водоподготовки необходимо предусматривать установку сеток с ячейками 0,5—2 мм. При среднемесячном содержании в воде планктона более 1000 кл/мл и продолжительности “цветения” более 1 мес. в году в дополнение к сеткам на водозаборе следует предусматривать установку микрофильтров на водозаборе или на станции водоподготовки.
3. При обосновании для обработки воды допускается применять сооружения, не указанные в табл. 15 (плавучие водозаборы-осветлители, гидроциклоны, флотационные установки и др.).
4. Осветлители со взвешенным осадком следует применять при равномерной подаче воды на сооружения или постепенном изменении расхода воды в пределах не более 15 % в 1 ч и колебании температуры воды не более ±1°С в 1 ч.

Сетчатые барабанные фильтры

6.11. Сетчатые барабанные фильтры следует применять для удаления из воды крупных плавающих и взвешенных примесей (барабанные сетки) и для удаления указанных примесей и планктона (микрофильтры).
Сетчатые барабанные фильтры следует размещать на площадке станций водоподготовки, при обосновании допускается их размещение на водозаборных сооружениях.
Сетчатые барабанные фильтры надлежит устанавливать до подачи в воду реагентов.
6.12. Количество резервных сетчатых барабанных фильтров надлежит принимать:

6.13. Установку сетчатых барабанных фильтров следует предусматривать в камерах. Допускается размещение в одной камере двух агрегатов, если число рабочих агрегатов св. 5.
Камеры должны оборудоваться спускными трубами.
В подводящем канале камер следует предусматривать переливной трубопровод.

6.14. Промывка сетчатых барабанных фильтров должна осуществляться водой, прошедшей через них.
Расходы воды на собственные нужды следует принимать: для барабанных сеток — 0,5% и микрофильтров —1,5% расчетной производительности.

Реагентное хозяйство

6.15. Расчетные дозы реагентов следует устанавливать для различных периодов года в зависимости от качества исходной воды и корректировать в период наладки и эксплуатации сооружений. При этом надлежит учитывать допустимые их остаточные концентрации в обработанной воде, предусмотренные ГОСТ 2874—82 и технологическими требованиями.
6.16. Дозу коагулянта Дк, мг/л, в расчете на Al2(SO4)3, FeCl3, Fe2(SO4)3 (по безводному веществу) допускается принимать при обработке: мутных вод — по табл. 16, цветных вод — по формуле

(6)

где Ц — цветность обрабатываемой воды, град.

Примечание. При одновременном содержании в воде взвешенных веществ и цветности принимается большая из доз коагулянта, определенных по табл. 16 и формуле (6).

Таблица 16

Мутность воды, мг/лДоза безводного коагулянта для обработки мутных вод, мг/л
До 10025 – 35
Св. 100 до 20030 – 40
“ 200 “ 40035 – 45
“ 400 “ 60045 – 50
“ 600 “ 80050 – 60
“ 800 “ 100060 – 70
“ 1000 “ 150070 – 80

Примечания: 1. Меньшие значения доз относятся к воде, содержащей грубодисперсную взвесь.
2. При применении контактных осветлителей или фильтров, работающих по принципу коагуляции в зоне фильтрующей загрузки, дозу коагулянта следует принимать на 10—15 % меньше, чем по табл. 16 и формуле (6).

6.17. Дозу флокулянтов (в дополнение к дозам коагулянтов) следует принимать:
а) полиакриламида (ПАА) по безводному продукту:
при вводе перед отстойниками или осветлителями со взвешенным осадком — по табл. 17;

Таблица 17

Мутность воды, мг/лЦветность воды, градДоза безводного ПАА, мг/л
До 10Св. 501 – 1,5
Св. 10 до 10030 – 1000,3 – 0,6
“ 100 “ 50020 – 600,2 – 0,5
“ 500 “ 1500¾0,2 – 1

при вводе перед фильтрами при двухступенчатой очистке — 0,05—0,1 мг/л;
при вводе перед контактными осветлителями или фильтрами при одноступенчатой очистке, а также перед префильтрами — 0,2—0,6 мг/л;
б) активной кремнекислоты (по SiO2):
при вводе перед отстойниками или осветлителями со взвешенным осадком для воды с температурой более 5—7°С — 2—3 мг/л, с температурой менее 5—7°С — 3—5 мг/л;
при вводе перед фильтрами при двухступенчатой очистке — 0,2—0,5 мг/л;
при вводе перед контактными осветлителями или фильтрами при одноступенчатой очистке, а также перед префильтрами — 1—3 мг/л.
Флокулянты следует вводить в воду после коагулянта. При очистке высокомутных вод допускается ввод флокулянтов до коагулянтов. Следует предусматривать возможность ввода флокулянтов и коагулянтов с разрывом во времени до 2—3 мин в зависимости от качества обрабатываемой воды.

6.18. Дозу хлорсодержащих реагентов (по активному хлору) при предварительном хлорировании и для улучшения хода коагуляции и обесцвечивания воды, а также для улучшения санитарного состояния сооружений следует принимать 3—10 мг/л.
Реагенты рекомендуется вводить за 1—3 мин до ввода коагулянтов.

6.19. Дозы подщелачивающих реагентов Дщ, мг/л, необходимых для улучшения процесса хлопьеобразования, надлежит определять по формуле

Дщ = Кщ (Дк/ек – Щ0) + 1, (7)

где Дк — максимальная в период подщелачивания доза безводного коагулянта, мг/л;
ек — эквивалентная масса коагулянта (безводного), мг/мг-экв, принимаемая для Al2(SO4)3 – 57, FeCl3 – 54, Fe2(SO4)3 – 67;
Кщ — коэффициент, равный для извести (по СаО) — 28, для соды (по Na2CO3) — 53;
Щ0 — минимальная щелочность воды, мг-экв/л.
Реагенты следует вводить одновременно с вводом коагулянтов.

6.20. Приготовление и дозирование реагентов надлежит предусматривать в виде растворов или суспензий. Количество дозаторов следует принимать в зависимости от числа точек ввода и производительности дозатора, но не менее двух (один резервный).
Гранулированные и порошкообразные реагенты надлежит, как правило, принимать в сухом виде.

6.21. Концентрацию раствора коагулянта в растворных баках, считая по чистому и безводному продукту, следует принимать: до 17% — для неочищенного, до 20% — для очищенного кускового, до 24% — для очищенного гранулированного; в расходных баках — до 12 %.

6.22. Время полного цикла приготовления раствора коагулянта (загрузка, растворение, отстаивание, перекачка, при необходимости чистка поддона) при температуре воды до 10°С следует принимать 10—12 ч.
Для ускорения цикла приготовления коагулянта до 6—8 ч рекомендуется использование воды температурой до 40°С.
Количество растворных баков надлежит принимать с учетом объема разовой поставки, способов доставки и разгрузки коагулянта, его вида, а также времени его растворения и должно быть не менее трех.
Количество расходных баков должно быть не менее двух.

6.23. Для растворения коагулянта и перемешивания его в баках надлежит предусматривать подачу сжатого воздуха с интенсивностью:
8—10 л/(с×м2) — для растворения;
3—5 л/(с×м2) — для перемешивания при разбавлении до требуемой концентрации в расходных баках.
Распределение воздуха следует предусматривать дырчатыми трубами.
Допускается применение для растворения коагулянта и перемешивания его раствора механических мешалок или циркуляционных насосов.

6.24. Растворные баки в нижней части следует проектировать с наклонными стенками под углом 45° к горизонтали для неочищенного и 15° для очищенного коагулянта. Для опорожнения баков и сброса осадка следует предусматривать трубопроводы диаметром не менее 150 мм.
При применении кускового коагулянта в баках должны быть предусмотрены съемные колосниковые решетки с прозорами 10—15 мм.
При применении гранулированного и порошкообразного коагулянта необходимо предусматривать на колосниковой решетке сетку из кислотостойкого материала с отверстиями 2 мм.

Примечание. Допускается уменьшение угла наклона стенок баков для неочищенного коагулянта до 25° при оборудовании подколосниковой части баков системой гидросмыва осадка и одновременной подаче сжатого воздуха.

6.25. Днища расходных баков должны иметь уклон не менее 0,01 к сбросному трубопроводу диаметром не менее 100 мм.

6.26. Забор раствора коагулянта из растворных и расходных баков следует предусматривать с верхнего уровня.

6.27. Внутренняя поверхность баков должна быть защищена кислотостойкими материалами.

6.28. При применении в качестве коагулянта сухого хлорного железа в верхней части растворного бака следует предусматривать колосниковую решетку. Баки должны размещаться в изолированном помещении (боксе) с вытяжной вентиляцией.

6.29. Для транспортирования раствора коагулянта следует применять кислотостойкие материалы и оборудование.
Конструкции реагентопроводов должны обеспечивать возможность их быстрой прочистки и промывки.

6.30. Полиакриламид следует применять в виде раствора с концентрацией полимера 0,1—1%.
Приготовление раствора из технического полиакриламида надлежит производить в баках с механическими лопастными мешалками. Продолжительность приготовления раствора из ПАА геля 25—40 мин, из ПАА сухого 2 ч. Для ускорения приготовления раствора ПАА следует использовать горячую воду с температурой не выше 50°С.

6.31. Количество мешалок, а также объем расходных баков для растворов ПАА следует определять исходя из сроков хранения 0,7—1 % растворов не более 15 сут, 0,4—0,6 % растворов — 7 сут и 0,1—0,3 % растворов — 2 сут.

6.32. Приготовление растворов активной кремнекислоты (АК) производится путем обработки жидкого стекла раствором сернокислого алюминия или хлором.
Активацию сернокислым алюминием или хлором следует производить на установках непрерывного или периодического действия.

6.33. Для подщелачивания и стабилизации воды следует применять известь. При обосновании допускается применение соды.

Читайте также:  Что означают понятия водопотребление и водопользование, в чем разница

6.34. Выбор технологической схемы известкового хозяйства станции водоподготовки надлежит производить с учетом качества и вида заводского продукта, потребности в извести, места ее ввода и т.д. В случае применения комовой негашеной извести следует принимать мокрое хранение ее в виде теста.
При расходе извести до 50 кг/сут по СаО допускается применение схемы с использованием известкового раствора, получаемого в сатураторах двойного насыщения.

6.35. Количество баков для известкового молока или раствора надлежит предусматривать не менее двух. Концентрацию известкового молока в расходных баках следует принимать не более 5 % по СаО.

6.36. Для очистки известкового молока от нерастворимых примесей при стабилизационной обработке воды надлежит применять вертикальные отстойники или гидроциклоны.
Скорость восходящего потока в вертикальных отстойниках следует принимать 2 мм/с.
Для очистки известкового молока на гидроциклонах необходимо обеспечивать двухкратный его пропуск через гидроциклоны.

6.37. Для непрерывного перемешивания известкового молока следует применять гидравлическое перемешивание (с помощью насосов) или механические мешалки.
При гидравлическом перемешивании восходящая скорость движения молока в баке должна приниматься не менее 5 мм/с. Баки должны иметь конические днища с наклоном 45° и сбросные трубопроводы диаметром не менее 100 мм.

Примечание. Допускается для перемешивания известкового молока применять сжатый воздух при интенсивности подачи 8—10 л/(с×м2).

6.38. Диаметры трубопроводов подачи известкового молока должны быть: напорных при подаче очищенного продукта не менее 25 мм, неочищенного — не менее 50 мм, самотечных — не менее 50 мм. Скорость движения в трубопроводах известкового молока должна приниматься не менее 0,8 м/с. Повороты на трубопроводах известкового молока следует предусматривать с радиусом не менее 5d, где d — диаметр трубопровода. Напорные трубопроводы проектируются с уклоном к насосу не менее 0,02, самотечные трубопроводы должны иметь уклон к выпуску не менее 0,03°.
При этом следует предусматривать возможность промывки и прочистки трубопроводов.

6.39. Концентрацию раствора соды следует принимать 5—8 %. Дозирование раствора соды следует предусматривать согласно п. 6.20.

Гигиена. Конспект лекций (В. Н. Шилов, 2009)

Гигиена как раздел медицины, изучающий связь и взаимодействие организма с окружающей средой, тесно соотносится со всеми дисциплинами, обеспечивающими формирование гигиенического мировоззрения врача: биологией, физиологией, микробиологией, клиническими дисциплинами. Это дает возможность широкого использования методов и данных этих наук в гигиенических исследованиях с целью изучения влияния факторов окружающей среды на организм человека и разработке комплекса профилактических мероприятий. Гигиеническая характеристика факторов среды и данные об их влиянии на здоровье в свою очередь способствуют более обоснованной диагностике заболеваний, патогенетическому лечению.

Оглавление

  • Лекция 1. Гигиена как наука
  • Лекция 2. Методы оценки эффективности гигиенических мероприятий, дополняющие санитарное описание
  • Лекция 3. История развития гигиены
  • Лекция 4. Роль воздушной среды. солнечная радиация
  • Лекция 5. Гигиеническое значение температуры и влажности воздуха
  • Лекция 6. Гигиеническое значение перемещения воздушных масс и атмосферного давления
  • Лекция 7. Электрическое состояние атмосферного воздуха
  • Лекция 8. Химический состав воздуха
  • Лекция 9. Влияние загрязнения воздуха на здоровье населения
  • Лекция 10. Вопросы гигиены почвы
  • Лекция 11. Геохимическое и токсикологическое значение почвы
  • Лекция 12. Значение воды
  • Лекция 13. Минеральный состав воды. Роль воды в возникновении заболеваний
  • Лекция 14. Источники водоснабжения
  • Лекция 15. Системы водоснабжения, их санитарно-гигиеническая характеристика
  • Лекция 16. Методы улучшения качества воды
  • Лекция 17. Гигиена детей и подростков – предмет и цели

Приведённый ознакомительный фрагмент книги Гигиена. Конспект лекций (В. Н. Шилов, 2009) предоставлен нашим книжным партнёром — компанией ЛитРес.

Лекция 16. Методы улучшения качества воды

1. Методы, применяемые для улучшения качества воды. Очистка

Чтобы качество воды соответствовало гигиеническим требованиям, применяют предварительную обработку. Улучшение свойств воды при централизованном водоснабжении достигают на водопроводных станциях. Для улучшения качества воды применяют следующее:

• очистка – удаление взвешенных частиц;

• обеззараживание – уничтожение микроорганизмов;

• специальные методы улучшения органолептических свойств – умягчение, удаление химических веществ, фторирование и др.

Очистка осуществляется механическим (отстаивание), физическим (фильтрование) и химическим (коагуляция) методами.

Отстаивание, при котором происходит осветление и частичное обесцвечивание воды, осуществляется в специальных сооружениях – отстойниках. Принцип их действия состоит в том, что при поступлении через узкое отверстие и замедленном продвижении воды в отстойнике основная масса взвешенных частиц оседает на дно. Однако мельчайшие частицы и микроорганизмы не успевают осесть.

Фильтрация – пропускание воды через мелкопористый материал, чаще всего через песок с определенным размером частиц. Фильтруясь, вода освобождается от взвешенных частиц.

Коагуляция – химический метод очистки. К воде добавляют коагулянт, реагирующий с находящимися в воде бикарбонатами. В этой реакции образуются крупные, тяжелые хлопья, несущие положительный заряд. Оседая под собственной тяжестью, они увлекают за собой находящиеся во взвешенном состоянии частицы загрязнений, заряженные отрицательно.

В качестве коагулянта применяется сульфат алюминия. Для улучшения коагуляции используются высокомолекулярные флокулянты: щелочной крахмал, активизированная кремниевая кислота и другие синтетические препараты.

2. Обеззараживание. Специальные методы улучшения органолептических свойств

Обеззараживанием уничтожаются микроорганизмы на завершающем этапе обработки воды. Для этого применяют химические и физические методы.

Химические (реагентные) методы обеззараживания основаны на добавлении к воде различных химических веществ, вызывающих гибель микроорганизмов. В качестве реагентов могут быть использованы различные сильные окислители: хлор и его соединения, озон, йод, перманганат калия, некоторые соли тяжелых металлов, серебро.

Химические способы обеззараживания имеют ряд недостатков, которые заключаются в том, что большинство реагентов отрицательно влияют на состав и органолептические свойства воды.

Безреагентные или физические методы не оказывают влияния на состав и свойства обеззараживаемой воды, не ухудшают ее органолептических свойств. Они действуют непосредственно на структуру микроорганизмов, вследствие чего обладают более широким диапазоном бактерицидного действия.

Наиболее разработанным и изученным в техническом отношении методом является облучение воды бактерицидными (ультрафиолетовыми) лампами. Источниками излучения служат аргонно-ртутные лампы низкого давления (БУВ) и ртутно-кварцевые (ПРК и РКС).

Из всех физических методов обеззараживание воды наиболее надежным является кипячение, но не находит широкого применения.

К физическим методам обеззараживания относится использование импульсного электрического разряда, ультразвука и ионизирующего излучения.

Практического применения также не находят.

Дезодорация – удаление посторонних запахов и привкусов. С этой целью применяются такие методы, как озонирование, углевание, хлорирование, обработка перманганатом калия, перекисью водорода, фторирование через фильтры, аэрация.

Умягчение воды – удаление из нее катионов кальция и магния. Производится специальными реагентами или при помощи ионообменного и термического методов.

Опреснение воды достигается дистилляцией в опреснителях, а также электрохимическим способом и вымораживанием.

Обезжелезивание производится аэрацией с последующим отстаиванием, коагулированием, известкованием, катионированием, фильтрованием через песчаные фильтры.

Эффективным методом обеззараживания воды в колодце является использование дозирующих хлоросодержащих патронов, которые подвешивают ниже уровня воды.

3. Зоны санитарной охраны водоисточников

Санитарным законодательством предусматривается организация двух зон санитарной охраны водоисточников.

Зона строгого режима включает территорию, на которой располагается место забора, водоподъемные устройства, головные сооружения станции и водопроводящий канал. Эта территория огораживается и строго охраняется.

Зона ограничения включает территорию, предназначенную для охраны от загрязнения источников водоснабжения (источник водоснабжения и бассейн его питания).

Оглавление

  • Лекция 1. Гигиена как наука
  • Лекция 2. Методы оценки эффективности гигиенических мероприятий, дополняющие санитарное описание
  • Лекция 3. История развития гигиены
  • Лекция 4. Роль воздушной среды. солнечная радиация
  • Лекция 5. Гигиеническое значение температуры и влажности воздуха
  • Лекция 6. Гигиеническое значение перемещения воздушных масс и атмосферного давления
  • Лекция 7. Электрическое состояние атмосферного воздуха
  • Лекция 8. Химический состав воздуха
  • Лекция 9. Влияние загрязнения воздуха на здоровье населения
  • Лекция 10. Вопросы гигиены почвы
  • Лекция 11. Геохимическое и токсикологическое значение почвы
  • Лекция 12. Значение воды
  • Лекция 13. Минеральный состав воды. Роль воды в возникновении заболеваний
  • Лекция 14. Источники водоснабжения
  • Лекция 15. Системы водоснабжения, их санитарно-гигиеническая характеристика
  • Лекция 16. Методы улучшения качества воды
  • Лекция 17. Гигиена детей и подростков – предмет и цели

Приведённый ознакомительный фрагмент книги Гигиена. Конспект лекций (В. Н. Шилов, 2009) предоставлен нашим книжным партнёром — компанией ЛитРес.

Сорбционно-осветлительные фильтрующие загрузки

Фильтруюшие загрузки для осветления воды

Filter-AG Гидроантрацит – А Дробленый керамзит

Garnet Diamix Aqua марка A/B ОДМ-2Ф

Turbidex Filter Medio Aqualat Сорбент МИУ-С

Осветление воды. Общие понятия

Присутствие крупнодисперсных и коллоидных примесей в скважинных и колодезных водах ухудшает органолептические качества воды – мутность, цветность. Вода становится непригодна для питьевых, хозяйственно-бытовых и производственных целей, а так же ограничивает использование теплообменного оборудования. Выходят из строя сантехнические приборы, запорно-регулирующая арматура, насосное оборудование, повышается абразивное воздействие на внутреннюю поверхность трубопроводов. Процесс снижения мутности называется осветлением воды. Эффективное осветление воды может быть реализовано следующими 4мя способами:

– фильтрация на специальных перегородках (поверхностная фильтрация);

– фильтрация через слой зернистой загрузки;

– осветление воды с коагулированием.

Способ отстаивания – это наиболее длительный процесс из названных, поэтому он не используется в коттеджной и промышленной водоподготовке. Применяется в основном в домашних условиях. Фильтрация на специальных перегородках – это фильтрация через жесткую сетку или перегородку с заданным рангом (степенью) фильтрации. Пример – фильтры Honeywell (Германия), Arkal (Израиль) и угловые сетчатые фильтры. Степень фильтрации таких фильтров варьируется от 20 до 400 мкм. Как правило, такие фильтры устанавливаются первыми в технологической цепочке водоподготовки. Третий способ осветления воды на зернистых фильтрующих материалах – получил наибольшее распространение в водоподготовке.

Осветление воды на зернистых фильтрующих загрузках

Для того, чтобы получить прозрачную воду на выходе фильтра, соответствующую нормам СанПин Питьевая вода 2.1.4.1074-01, необходимо правильно подобрать нужный фильтрующий материал. Материал должен иметь строго определенный размер зерен и их разброс. Нужно правильно подобрать высоту слоя. Материал для осветления питьевой воды должен обладать высокой механической прочностью: минимальной истираемостью и измельчаемостью. Высокая химическая стойкость – это минимальный смыв с загрузки химических элементов в очищаемую воду, например, кремнийсодержащих соединений. Материал должен быть не слишком тяжелым и не слишком легким. Этим требованиям в той или иной степени удовлетворяют следующие фильтрующие загрузки осуществляющие осветление воды и очистку от взвесей: гидроантрацит, дробленый керамзит, Фильтр АГ, Фильтр АГ+ и другие. Существует более эффективная технология двух- и трехслойных фильтров. Это технология широко используется нашей компанией. Технология заключается в следующем: в фильтрующую колонну нужного типоразмера засыпается 2 или 3 вида фильтрующего материала, сверху обязательно должен располагаться слой с более крупными зернами, а нижний должен иметь зерна меньшего размера, при этом верхний материал для осветления воды должен быть легче нижнего. Соотношение размера зерен нужно подбирать таким образом, чтобы при обратной промывке высота расширения была одинакова. В этом заключается мастерство подбора систем водоочистки. Теоретически и практически доказано, что такие двухслойные фильтры по сравнению с однослойными имеют грязеемкость (эффективность очистки) в полтора раза выше. Так же необходимо достаточное количество воды на обратную промывку фильтра осветления. В противном случае имеет место постепенное забивание пор фильтрующих материалов, и, как следствие, падение давления и снижение эффекта осветления воды. Помимо этого в слое загрузки образуются микроорганизмы, что ухудшает органолептические качества воды – вкус, цветность, мутность. Напомним, что мутность воды обусловлена наличием мелкодисперсных (мелко рассеянных) примесей различной природы. Это могут быть частицы глины, песка, органические частички, бактерии. Так же мутность обусловлена наличием коллоидных примесей, по размеру они мельче мелкодисперсных частиц, и трудно удаляемые. Такие примеси имеют разнополюсный электрический заряд, отталкивающий частицы друг от друга, и это затрудняет процесс осветления воды фильтрованием через зернистые загрузки. В таких случаях используют осветление воды с применением коагуляции. Стоит отметить, что скважинные и многие колодезные воды не содержат коллоидных примесей, большое количество таких примесей обнаруживается в сточных и поверхностных водах, поэтому осветление воды методом коагуляции, как правило, применимо к очистке сточных вод. Процесс осветления воды методом коагуляции подробно рассмотрен в следующей статье.

Осветление воды методом коагуляции

В последние несколько лет качество воды из колодцев значительно ухудшилось. Это связано с антропогенным загрязнением поверхностных вод. Напомним, что поверхностные воды связаны с водами на первом водонепроницаемом слое, на который копают колодцы. Вода из колодца имеет высокую мутность, цветность, высокое содержание органики и железа. Такая картина наблюдается у 60 – 70% наших заказчиков, у которых источником водоснабжения является колодец. Мутная вода, красно-желтоватого оттенка, набранная в бутылку, постояв день – два становится прозрачной, причем на дне бутылки образуется хлопьевидный осадок белого, черного или охристого цвета. Это, собственно, и есть осевшие коллоидные примеси, и осветлить воду достаточно сложно. Зернистые фильтрующие материалы не могут задержать такие коллоидные примеси, поэтому фильтрация через слой какой-либо загрузки бесполезна, на выходе все равно будет мутная вода. Объясняется это тем, что степень фильтрации самых лучших фильтрующих материалов составляет 5 микрон, а размер коллоидных частичек обычно меньше 1 микрона. В этом случае осветлить воду возможно только предварительным коагулированием перед фильтрацией. Существует целый раздел высшей химии: химия коллоидных систем и химия коагулирования. Рассмотрим только базовое понимание данной проблемы с водой. Коллоидная частица имеет сложное строение и постоянно находится в физико-химическом взаимодействии с раствором. Поверхность коллоидной частицы может быть заряжена положительно (глинистые частицы), отрицательно (органические частицы), нейтрально (в этом случае частица выпадает в осадок). Коллоидная частица может представлять из себя микроорганизм, бактерию, вирус. Очень часто коллоидные частицы бывают органической природы, имеют отрицательный заряд и отталкиваются друг от друга, не оседают и находятся в взвешенном состоянии. Такая картина наблюдается при высоком содержании органики в анализе воды на фоне низкой минерализации. Для того, чтобы снять отрицательный заряд и связать мелкие частицы в крупные, применяют коагулирование. Раньше коагулирование осуществлялось дозированием сульфата алюминия. Этот реагент и по сей день используют для осветления высокомутных вод на городских очистных сооружениях сточных вод. В настоящее время существует более современное и эффективное средство – линейка реагентов Аква-аурат. Широко применяется нашей компанией при возникновении задач осветления воды в коттеджной водоочистке. Если вашим источником водоснабжения является колодец, и рассмотренная проблема с водой коснулась вас – проведите полный анализ воды в лаборатории, и результат отправляйте нам. Мы предложим несколько технических вариантов, как провести осветление воды из колодца и решить проблему с качеством воды у вас в коттедже или на даче.

Отправить заявку на поставку материалов для осветления

Ссылка на основную публикацию