Устройство и принцип работы однофазного трансформатора

Устройство и принцип работы трансформатора

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем знакомство с электронными компонентами и в этой статье рассмотрим устройство и принцип работы трансформатора.

Трансформаторы нашли широкое применение в радио и электротехнике и применяются для передачи и распределения электрической энергии в сетях энергосистем, для питания схем радиоаппаратуры, в преобразовательных устройствах, качестве сварочных трансформаторов и т.п.

Трансформатор предназначен для преобразования переменного напряжения одной величины в переменное напряжение другой величины.

В большинстве случаев трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя катушками (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки мотают медным изолированным проводом и размещают на магнитопроводе.

Одна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке ниже.

1. Принцип работы трансформатора.

Принцип работы трансформатора основан на явлении электромагнитной индукции.

Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.

В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.

Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

2. Устройство трансформатора.

2.1. Магнитопровод. Магнитные материалы.

Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением. Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях. Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.

Магнитные материалы, используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями.
Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.

Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.

Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали, имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.

Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.

Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.

Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.

Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы, которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.

Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.

2.2. Типы магнитопроводов.

Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.

Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.

Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.

В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые, броневые и тороидальные. При этом каждый из этих типов может быть и стрежневым и ленточным.

В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.

Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.

В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.

Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.

Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.

Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.

Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.

За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.

На этом пока закончим. Продолжим во второй части.
Удачи!

1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.
2. В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.
3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.
4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.
5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

Читайте также:  Рейтинг производителей электрических автоматов по надежности: какие лучше

Однофазный трансформатор

Электрическая энергия, выработанная генераторами электростанций, передается потребителям, находящимся в большинстве случаев на большом расстоянии от станций. Для удешевления стоимости электропередачи и уменьшения потерь энергии в ней приходится повышать напряжение электропередачи до cотен киловольт. При распре делении энергии между потребителями необходимо понизить напряжение до десятков и сотен вольт. Все это вызывает необходимость многократного изменения (трансформирования) напряжения, которое осуществляется трансформаторам

Трансформатором называется статический аппарат, имеющий две (иногда более) обмотки, связанные переменным магнитным полем, служащий для трансформации переменного тока одного напряжения в переменный ток другого напряжения, при неизменной частоте.

Число трансформаций от станции до потребителя обычно велико, и поэтому на 1 квт мощности генераторов, установленных на станции, приходится 4— 5 ква установленной мощности трансформаторов. Суммарные потери электроэнергии в трансформаторах составляют значительную долю потерь всей энергосистемы. Поэтому необходимо, чтобы трансформатор имел очень высокий к.п.д. В современных мощных трансформаторах к.п.д доходит до 0,995 при номинальной мощности.

Изобретателем трансформатора был выдающийся конструктор и ученый П. Н. Яблочков (1847 -1894).

Рис. 9-1. Однофазный трансформатор.

1 — магнитопровод; 2 — обмотка высшего напряжения; 3 — обмотка низшего напряжения; 4—путь полезного потока; 5 — путь потоков рассеяния первичной обмотки; 6 — путь потоков рассеяния вторичной обмотки.

ПРИНЦИП ДЕЙСТВИЯ И УСТРОЙСТВО ОДНОФАЗНОГО ТРАНСФОРМАТОРА

Работа трансформатора основана на использовании явления взаимоиндукции. Трансформатор (рис. 9-1) имеет обычно две магнитно-связанные обмотки 2—2 и 3—3 с разными числами витков, помещенные для усиления магнитной связи на стальном, замкнутом магнитопроводе — сердечнике 1. Сердечник для уменьшения потерь энергии от вихревых токов набирается из стальных листов толщиной 0,5—0,35 мм, а при повышенной частоте тока — из более тонких листов (0,2—0 ,1 мм). Листы, перед сборкой, покрываются с двух сторон лаком для изоляции друг от друга. Трансформаторная сталь содержит 4—5% кремния, при этом сильно уменьшаются потери от гистерезиса и вихревых токов.

Те части сердечника, на которых располагаются обмотки, называются стержнями, а части, замыкающие их, называются ярмом. Внутреннее пространство между стержнем и ярмом служит для размещения обмоток и называется окном.

Сборка сердечника производится «внахлестку». На рис. 9-2 показаны два слоя листов, которые накладываются друг на друга при сборке сердечника трансформатора. При такой сборке достигается минимальный воздушный зазор в стыках.

Рис. 9 -2. Расположение листов стали однофазного трансформатора при сборке.

Листы предварительное стягиваются изолированными болтами в пакеты сначала так, чтобы на стержни можно было надеть изготовленные обмотки (рис.9-3), а затем окончательно, чтобы после установки обмоток, замкнуть магнитопровод. Сечение стержней, получаемое при этом, показано на рис. 9-4 — квадратное при малой мощности, или крестовидное, приближающееся к кругу, при средней и большой мощности трансформаторов.

Обмотки трансформатора представляют собой катушки разных конструкций. Различают обмотку низшего напряжения (НН), рассчитанную на низшее напря жение трансформатора, которая помещается ближе к стерж ню, и обмотку высшего напряжения (ВН), рассчитанную на высшее напряжение и помещаемую по верх обмотки (НН), концентрически с ней.

На рис. 9-1 обмотки ВН и НН показаны сдвинутыми друг относительно друга для упрощений рисунка. В однофазных трансформаторах (рис. 9-1) каждая обмотка делится пополам и помещается на двух стержнях. Обе половины обмотки НН и обмотки ВН соединяются так, чтобы э. д. с. половин обмоток складывались.

Рис. 9-3. Сборка сердечника трансформатора.

1 — стержень магнитопровода; 2 — обмотки.

Начала и концы обмоток трансформаторов обозначаются буквами латинского алфавита. Начала обмоток обозначают Л, В, С и a, b, с, а концы — X, Y, Z и х, y, z. Заглавные буквы приняты для обмотки высшего напряжения, а строчные — для обмотки низшего напряжения (рис. 9-1).

Та обмотка, к которой энергия подводится, называется первичной, а та, от которой энергия отдается потребителю, называется вторичной. Энергия передается с первичной обмотки на вторичную при помощи магнитного потока, связывающего обмотки. Если напряжение вторичной обмотки меньше, чем первичной, то трансформатор называется понижающим; в обратном случае он будет повышающим.

Рис. 9-4. Сечение сердечников трансформаторов.

Таким образом, трансформатор, показанный на рис. 9 1 понижающий. Однако если к обмотке ах подать энергию при номинальном для этой обмотки напряжении, а к обмотке АХ подключить потребителя, то трансформатор будет повышающим.

Трансформатор с сердечником рассмотренного выше типа называется стержневым. Однако существуют трансформаторы броневого типа (рис. 9-5), у которых магнитопровод разветвлен и охватывает обмотки как бы броней.

P ис 9.5 Броневой трансформатор.

Обмотки ВН и НН таких трансформаторов изготовляются в виде плоских катушек, размещающихся на одном и том же стержне. Трансформаторы броневого типа применяются, например, в радиотехнических устройствах.

Номинальной мощностью трансформатора называется мощность его вторичной обмотки, обозначенная на щитке трансформатора и выраженная в вольт-амперах или киловольт-амперах.

Статья на тему Однофазный трансформатор

Назначение и принцип действия однофазного трансформатора

В энергетической сфере деятельности используются первичные источники высокого переменного напряжения, однако в быту или на предприятиях необходимо значительно его снизить. Для этой цели применяются трансформаторы. Для полного понимания и грамотного применения напряжения в быту необходимо знать принцип действия однофазного трансформатора.

Общие сведения о трансформаторах

Значительно легче передавать переменный ток на большие расстояния, так как достигаются минимальные потери, связанные с величинами напряжения (U) и тока (I). Кроме того, для передачи не переменного, а постоянного I необходимо применять сложную электронику, которая основана на усилении параметров электричества. Основной частью этой технологии являются мощные транзисторы, которые требуют специального охлаждения, и главным критерием является цена. Использование трансформаторов, которые работают только от переменной величины тока, является оптимальным решением.

Назначение и устройство

Трансформатор (Т) — это специализированное электрическое устройство, которое работает только от переменного I и используется для преобразования значений входного U и I в необходимые значения этих величин, предусмотренных потребителем.

Т является довольно примитивным устройством, однако в его конструкции есть некоторые особенности. Для понимания принципа действия однофазного трансформатора следует изучить его назначение и устройство. Устроен однофазный трансформатор следующим образом — он состоит из магнитопровода и обмоток.

Магнитопровод, или сердечник трансформатора, выполнен из ферромагнитного материала.

Ферромагнетики — это вещества, обладающие самопроизвольной намагниченностью. Это обусловлено тем, что атомы вещества обладают очень важными свойствами: постоянные спиновые и орбитальные моменты. Свойства ферромагнетиков зависят от температуры и действия магнитного поля. Для изготовления магнитопровода Т используются такие материалы: электротехническая сталь или пермаллой.

Электротехническая сталь содержит в своем составе большую массовую долю кремния (Si), которая под действием высокой температуры соединяется с атомами углерода ©. Этот тип используется во всех типах Т, независимо от мощности.

Пермаллой является сплавом, состоящим из никеля (Ni) и железа (Fe), и применяется только в маломощных трансформаторах.

Тип Т представляет собой катушки, состоящие из каркаса и провода, покрытого изоляционным материалом. Этот провод намотан на основание катушек, и количество витков зависит от параметров Т. Количество катушек может быть 2 и более, оно зависит от конструктивной особенности электрического устройства и определяется сферой применения.

Принцип действия

Принцип работы однофазного трансформатора довольно простой и основан на генерации электродвижущей силы (ЭДС) в обмотках проводника, который находится в движущемся магнитном поле и сгенерирован при помощи переменного I. При прохождении электричества по обмоткам первичной катушки создается магнитный поток (Ф), который пронизывает и вторичную катушку. Силовые линии Ф благодаря замкнутой конструкции магнитопровода имеют замкнутую структуру. Для получения оптимальной мощности Т необходимо располагать катушки обмоток на близком расстоянии относительно друг друга.

Исходя из закона электромагнитной индукции происходит изменение Ф и индуцируется в первичной обмотке ЭДС. Эта величина называется ЭДС самоиндукции, а во вторичной — ЭДС взаимоиндукции.

При подключении потребителя к первичной обмотке Т в цепи появится электрическая энергия, которая передается из первичной обмотки через магнитопровод (катушки не связаны гальванически). В этом случае средством передачи электроэнергии служит только Ф. Трансформаторы по конструктивной особенности бывают различные. По достижению максимальной магнитной связи (МС) Т делятся на следующие типы:

При слабой МС происходит значительная потеря энергии и Т такого типа практически не применяются. Основной особенностью таких Т являются незамкнутые сердечники.

Уровень средней МС достигается только при полностью замкнутом магнитопроводе. Одним из примеров такого Т является стержневой тип, у которого обмотки расположены на железных стержнях и соединены между собой накладками или ярмами. В результате такой конструкции получается полностью замкнутый сердечник.

Примером сильной МС является Т броневого типа, обмотки которого располагаются на одной или нескольких катушках. Эти обмотки расположены очень близко, благодаря чему и обеспечивается минимальная потеря электрической энергии. Магнитопровод полностью покрывает катушки, создавая более сильный Ф, который разбивается на 2 части. У трансформаторов такого типа потоки сцепления между обмотками практически равны.

Режимы работы

Т, как и любой вторичный источник питания, имеет определенные режимы работы. Режимы отличаются потреблением I. Существует 2 режима: холостого хода и нагрузки. При холостом ходе Т потребляет минимальное количество I, которое используется только на намагничивание и потери в обмотках на нагревание. Кроме того, происходит рассеивание магнитного поля. Ф создается I магнитодвижущей силы, которую генерирует первичная обмотка. В этом случае I холостого хода составляет 3−10% от номинального показателя (Iн).

При нагрузке во II обмотке появляется I, а значит — и магнитодвижущая сила (МДС). По закону Ленца: МДС II обмотки действует против МДС первичной обмотки. При этом ЭДС в первичной обмотке во время нагрузки Т равна U и прямо пропорциональна Ф. В этом случае получение k можно записать в виде: I1 / I2 = w2/w1 = 1/k.

Исходя из формул для расчета k, можно получить еще одно соотношение Т: e1 * I1 = e2 * I2 = 1.

Это соотношение показывает, что мощность, потребляемая первичной обмоткой, равна мощности, которую потребляет II обмотка при нагрузке. Мощность Т измеряется в вольт-амперах (ВА).

Основные параметры

Кроме того, следует отметить, что любой Т обладает некоторыми параметрами, которые и отличаются от других трансформаторов. К тому же, если понимать эти зависимости, то можно рассчитать и изготовить Т своими руками.

Читайте также:  Автоматические стабилизаторы напряжения Ресанта для дома

Связь между ЭДС, возникающей в обмотках Т, зависит от количества витков каждой из них. Исходя из того, что I и II обмотки пронизываются одним и тем же Ф, возможно вычислить следующее соотношение на основании общего закона индукции для мгновенных значений ЭДС:

  1. Для первичной с количеством витков w1: e1 = – w1 * dФ/dt * E-8.
  2. Для вторичной с количеством витков w2: e2 = – w2 * dФ/dt * E-8.

Соотношение dФ/dt показывает величину изменения Ф за единицу времени. Значение потока Ф зависит от закона изменения переменного тока за единицу времени. Исходя из этих выражений получается следующая формула соотношения числа витков к ЭДС каждой обмотки:

Следовательно, можно сделать следующий вывод: индуцируемые в обмотках значения ЭДС также относятся к друг другу, как и число витков обмоток. Для более простой записи можно сопоставить значения e и U: e = U. Из этого следует, что e1 = U1 e2 = U2 и возможно получить еще одну величину, называемую коэффициентом трансформации (к): e1/e2 = U1/U2 = w1 / w2 = k. По коэффициенту трансформации Т делятся на понижающие и повышающие.

Понижающим является Т, k которого меньше 1, и, соответственно, если к > 1, то он является повышающим. При отсутствии потерь в проводах обмоток и рассеивания Ф (они незначительны и ими можно пренебречь) вычислить основной параметр Т (k) достаточно просто. Для этого необходимо воспользоваться следующим простым алгоритмом нахождения k: найти соотношения U обмоток (если обмоток более 2, то соотношение нужно искать для всех обмоток).

Однако расчет k является только первым шагом для дальнейшего расчета или выявления неисправности на наличие короткозамкнутых витков.

Чтобы определить значения U, необходимо использовать 2 вольтметра, точность которых составляет около 0,2−0,5. Кроме того, для определения k существуют такие способы:

  1. По паспорту.
  2. Практически.
  3. Использование определенного моста (мост Шеринга).
  4. Прибором, предназначенным для этой цели (УИКТ).

Таким образом, принцип работы однофазного трансформатора основан на простом законе физики, а именно: если проводник с n количеством витков поместить в магнитное поле, причем это поле должно постоянно меняться с течением времени, то в витках будет генерироваться ЭДС. В этом случае справедливо и обратное утверждение: если в постоянное магнитное поле поместить проводник и осуществлять им движения, то в его обмотках начинает появляться ЭДС.

Что такое однофазный трансформатор

Однофазный трансформатор – статическое устройство, имеющее две обмотки связанные индуктивно на магнитопроводе, предназначенное для преобразования одной величины напряжение и тока в другое в одной фазе.

Конструкция однофазного трансформатора

Любой однофазный трансформатор может работать только в цепях переменного тока. За счёт него полученное электрическое напряжение изменяется в нужную величину. Ток, полученный таким способом, повышается, в результате того, что мощность отдаётся в действительности без потерь. С этого и следует вывод, что основное использование такого прибора – вывести необходимое для решения задачи напряжение, после чего можно применять в определённых целях.

Вникнуть в работу прибора поможет детальный разбор конструкции трансформатора. Состоит он из следующих основных частей:

  • Сердечник, состоящий из материалов с ферромагнитными свойствами;
  • Две катушки, вторая находится на отдельном каркасе;
  • Защитный чехол (имеется не у всех моделей).

Конструкция однофазного трансформатора

Принцип работы

Однофазный трансформатор работает на определённом законе, ввиду которого идущее в витке переменное электромагнитное поле наводит электродвижущую силу в расположенном рядом проводнике. Действие названо законом электромагнитной индукции, которое было открыто Майклом Фарадеем в 1831 году. В результате обоснования закона учёный создал общую теорию, используемую в работе огромного числа современных электрических приборов.

При подключении первичной обмотки к источнику переменного тока в витках этой обмотки протекает переменный ток I1, который создает в сердечнике (магнитопроводе) переменный магнитный поток. Замыкаясь в сердечнике, этот поток сцепляется с первичной и вторичной обмотками и индуцирует в них ЭДС, пропорциональные числу витков W.

Принцип работы трансформатора

В первичной обмотке ЭДС самоиндукции:
во вторичной обмотке ЭДС взаимоиндукции:
При подключение ко вторичной обмотке нагрузке потечет I2 и установиться U2.

Режимы работы

Как и любой другой преобразователь, однофазный трансформатор имеет три режима работы:

  1. Режим холостого хода. Из названия понятно, что ток проходить не будет, в виду разомкнутой вторичной цепью устройства. А по первичной обмотке проходит холостой ток, основной элемент которого представлен реактивным током намагничивания. Режим используется в качестве определения КПД трансформатора, либо для вывода потерь в сердечнике.
  2. Режим нагрузки. Режим определяется работой трансформатора с подсоединённым источником в первичной цепи, и определённой нагрузкой во вторичном канале устройства. Для вторичной цепи характерен протекающий ток нагрузки (посчитанного из отношения количества витков обмотки и вторичного тока) и ток холостого хода.
  3. Режим короткого замыкания. Режим действует в процессе замыкания вторичной цепи из-за разностей значения потенциала. В этом режиме получаемое сопротивление от вторичной обмотки будет одним источником нагрузки. При проведении короткого замыкания можно вычислить убыток на нагрев обмотки в цепи устройства.

Коэффициент трансформации

Трансформаторы бывают повышающие и понижающие, что бы это определить нужно узнать коэффициент трансформации, с его помощью можно узнать какой трансформатор. Если коэффициент меньше 1 то трансформатор повышающий(также это можно определить по значениям если во вторичной обмотке больше чем в первичной то такой повышающий) и наоборот если К>1, то понижающий(если в первичной обмотке меньше витков чем во вторичной).

Формула по вычислению коэффициента трансформации

  • U1 и U2 — напряжение в первичной и вторичной обмотки,
  • N1 и N2 — количество витков в первичной и вторичной обмотке,
  • I1 и I2 — ток в первичной и вторичной обмотки.

Виды магнитопроводов

Классификация однофазных трансформаторов

Силовой трансформатор

Трансформатор используется в преобразовании электроэнергии в сетях и в устройствах, используемых для получения и применения нужной величины электрической энергии. «Силовой» подразумевает его работу с высоким напряжением. Использование силовых трансформаторов вынуждается разными показателями рабочей мощности ЛЭП, сетей в городской полосе, выводящее напряжение для конечных объектов, а также для общей работы электрических устройств и машин. Мощность разнится от нескольких единиц вольт до сотен киловатт.

Автотрансформатор – один из видов преобразователя, где первичная и вторичная обмотки не разделены, а соединены друг с другом напрямую. Ввиду этого между ними образуется как электромагнитная, так и электрическая связь. Обмотка сопровождается как минимум тремя выводами, подсоединяясь к каждой из них, можно использовать разные мощности. Главным достоинством такого трансформатора – это его высокий уровень КПД, так как преобразуется не всё напряжение, а лишь некоторая часть. Разница особенно заметна, когда входная и выходная мощность имеют незначительные отличия.

Трансформатор тока

Такой трансформатора используется в основном для уменьшения тока первичной обмотки до нужного значения, подходящего в применении цепей измерения, защиты, регулирования и сигнализации. Помимо этого используется в гальванической развязке (передача электроэнергии или сигнала связанными электрическими цепями, при этом электрический контакт между ними отсутствует).

Нормируемое значение параметров тока вторичной обмотки – 1 А или 5 А. Первичная обмотка трансформатора подсоединяется ступенчато в цепь с нагрузкой, при этом переменный ток подвергается контролю, ко вторичной обмотке подключаются измерительные устройства.

Вторичной обмотке трансформатора тока необходимо постоянно находиться в режиме около короткого замыкания. Ведь при любом варианте разъединения цепи на неё поступает высокая мощность, способная выбить изоляцию и выхода из строя включённых приборов.

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

Трансформатор напряжения

Такой трансформатор получает энергию от источника напряжения. Используется в основном для изменения высокого напряжения в низкое в различных цепях, в том числе измерительных и релейной защиты и автоматики. Имеет возможность проводить изоляцию цепей защиты и измерения от цепей повышенной мощности.

Высоковольтный ТН(слева) и низковольтный ТН(справа)

Импульсный трансформатор

Применяется для изменения импульсных сигналов с откликом импульса в точности до десятков микросекунд. При этом форма импульса сопровождается лишь незначительным искажением. Главным назначением импульсного трансформатора является передача прямоугольного электрического импульса. Используется для преобразования коротких видеоимпульсов напряжения, зачастую воспроизводящихся с высокой скважностью.

Важный параметр при использовании импульсного трансформатора – это неискажённый вид передачи импульсных систем напряжения. При влиянии на вход устройства мощности, отличающейся друг от друга, важно получить напряжение, в точности совпадающее с той же самой формой, разве что, с другой амплитудой или различающейся полярностью.

Виды импульсных трансформаторов

Особенности

Как правило, однофазные трансформаторы используют в электрических сетях и в роли источников питания различных устройствах.

Исходя из того факта, что нагрев провода прямо пропорционален квадрату току, идущего через провод, то при передаче энергии на дальние расстояния выгоднее будет использовать высокие напряжения и небольшие токи. Для исключения повреждений электроприборов и уменьшения объёма изоляции в домашних условиях лучше использовать низкие мощности.

Ввиду этого, для уменьшения затрат на транспортировку электрической энергии в общей электросети в большом количестве применяются силовые трансформаторы: вначале увеличивают напряжение генераторов на электростанциях перед передачей энергии по кабелю, а уже после транспортировки уменьшают напряжение линий электропередач до нужного уровня в повсеместном использовании.

Однофазные трансформаторы

Эксплуатация

При использовании однофазных трансформаторов технике безопасности отводится особое место. Обусловлено это тем, что устройство находится под высоким напряжением, находящимся на первичных обмотках. При подключении и установке трансформатора в электрические схемы важно соблюдать ряд правил, для исключения поломок и нарушений работы прибора:

  • Чтобы обмотки не выходили из строя (выгорали), необходимо поставить защиту от короткого замыкания на вторичной цепи;
  • Необходимо контролировать температурный режим сердечника и обмоток. Желательно установить систему охлаждения, предусматривающую исключение критического повышения температуры при работе.

В случае различной нагрузки от электросети изменяется и её напряжение. Для стабильной работы устройств, получающих энергию, необходимо, чтобы напряжение не изменялось от установленного уровня выше допустимого диапазона. Ввиду этого допускается использование методов регулирования напряжения в сети.

Читайте также:  Разновидности и расчет трезфазных автоматических выключателей

Лабораторная работа № 6 Tрансформатор Цель работы:

ознакомление с устройством, принципом действия, характеристиками и методами исследования однофазных трансформаторов;

получение экспериментального подтверждения теоретических сведений о характеристиках однофазных трансформаторов.

Основные теоретические положения

Трансформатор— статический электромагнитный аппарат, предназначенный для преобразования электрической энергии переменного тока с параметрамиU1,I1в энергию переменного тока с параметрамиU2,I2той же частоты.

Полная электрическая мощность S1=U1I1, подводимая к трансформатору, практически полностью (за исключением небольших потерь в трансформаторе) передается приемникам электрической энергии.

Существует следующая классификация трансформаторов в соответствии с их назначением:

силовые трансформаторы значительной мощности, использующиеся при передаче и распределении электрической энергии;

специальные трансформаторы (сварочные, печные, испытательные) предназначенные для питания электросварочных аппаратов или получения весьма значительных величин тока и напряжения;

измерительные трансформаторы, служащие для расширения пределов измерения электроизмерительных приборов и преобразующие либо ток (измерительные трансформаторы тока), либо напряжение (измерительные трансформаторы напряжения);

автотрансформаторы, использующиеся для плавного регулирования напряжения или для преобразования напряжения в небольших пределах.

Рассмотрим устройство и принцип действия однофазного трансформатора (кроме автотрансформатора). Конструктивно трансформатор состоит из ферромагнитного магнитопровода, на котором в простейшем случае расположены две электрически не связанные между собой обмотки, выполненные из изолированного медного или алюминиевого провода (рис. 1). Обмотку, подключенную к источнику питания с U1(U1—питающее напряжение), принято называть первичной, а обмотку, с которой нагрузкой снимается напряжениеU2, вторичной. Во многих случаях трансформатор имеет не одну, а две или несколько вторичных обмоток, к каждой из которых подключается свой потребитель электроэнергии. В трехфазных электрических сетях используются одно- и трехфазные трансформаторы.

Сердечник трансформатора набирается из тонких листов электротехнической стали (0,5 мм или 0,35 мм), изолированных друг от друга пленкой окисла, бумагой или лаком с целью снижения потерь мощности на гистерезис и вихревые токи.

В паспорте трансформатора приводят его технические данные, необходимые для нормальной эксплуатации: тип, номинальную мощность Sном, номинальные напряженияU1ном,U2номи токиI1ном,I2номпервичной и вторичной обмоток, напряжение короткого замыкания и частотуfном.

Рациональное, экономичное использование трансформаторов обеспечивается при их полной нагрузке и недопущении работы силовых и сварочных трансформаторов на холостом ходу.

Принцип действия однофазного трансформатора

Под действием подведенного переменного напряжения U1в первичной обмотке трансформатора возникает переменный ток I1, который, проходя по виткам обмотки трансформатора, возбуждает в сердечнике магнитопровода переменный магнитный потокФ1. Этот поток индуцируете1 и е2 в обмотках трансформатора. ЭДСе1 уравновешивает основную часть U1 источника, ЭДСе2 создает напряжениеU2на выходных зажимах трансформатора. При замыкании вторичной цепи возникает токI2, который образует собственный магнитный потокФ2, накладывающийся на поток первичной обмотки. В результате создается общий магнитный поток Ф =Фmsinft (Фm— амплитудное значение магнитного потока трансформатора;f— частота переменного тока), сцепленный с витками обеих обмоток трансформатора. ПотокФназывается главным потоком или потоком взаимной индукции. При изменении этого потока в обмотках трансформатора индуцируются основные ЭДС –е1 и е2.

На рис. 1 показаны условно-положительные направления всех физических величин, характеризующих электромагнитные процессы в трансформаторе. Положительное направление Фсвязано с токомi1 правилом правоходного винта.

Помимо основного потока Фв магнитопроводе токи обмоток создают в окружающем пространстве магнитное поле рассеяния. Рассматривая принцип действия трансформатора, можно пренебречь полем рассеяния. Одновременно будем пренебрегать активными сопротивлениями обмоток. Трансформатор, для которого приняты эти условия, называют идеализированным.

Уравнения электрического состояния обмоток идеализированного трансформатора имеют вид:

где w1 иw2— число витков первичной и вторичной обмоток трансформатора;Em1 иEm2— амплитудные значения ЭДС в первичной и во вторичной обмотках. Из полученных уравнений следует, что ЭДСЕ1, так же как и ЭДСЕ2 трансформатора, будет опережать магнитный поток на угол/2.

При синусоидальном изменении магнитного потока магнитопровода действующие значения ЭДС, наводимых в первичной и вторичной обмотках трансформатора, определяются по формулам:

Вторичная обмотка трансформатора по отношению к потребителю электроэнергии является источником.

Отношение ЭДС первичной обмотки трансформатора к ЭДС вторичной его обмотки, равное отношению соответствующих чисел витков обмоток, называется коэффициентом трансформации:

Реальное магнитное поле трансформатора несколько отличается от идеализированного. Часть магнитных линий сцеплена только с первичной или только с вторичной обмоткой. Эти линии определяют дополнительное потокосцепление обмоток 1РАСи2РАС, которое называют потокосцеплениями рассеяния. Изменение потокосцепления1РАСи2РАСназывают ЭДС рассеяния.

Как и во всякой индуктивной катушке, при синусоидально изменяющемся магнитном поле ЭДС рассеяния можно заменить падением напряжения на индуктивном сопротивлении рассеянии. Тогда для комплексных величин получим

; .

Магнитные линии поля рассеяния частично проходят вне магнитопровода, по немагнитной среде, и сопротивления рассеяния Х1иХ2можно считать постоянными.

При изучении эксплутационных свойств трансформатора следует принимать во внимание активные сопротивления обмоток трансформатора R1 иR2. С учетом этих свойств полные уравнения электрического состояния обмоток трансформатора имеют вид:

;

,

где напряжение на вторичной обмотке, равное падению напряжения на сопротивлении приемникаZПР.

При рассмотрении потерь мощности и коэффициента полезного действия трансформатора можно ограничиться лишь потерями активной мощности, т.е. мощности, которая выделяется в стальном магнитопроводе (магнитные потери или потери в стали) и в медных обмотках (электрические потери или потери в меди) виде теплоты, обусловливающей его нагрев. Потери в стали РМобусловлены перемагничиванием материала сердечника (потери на гистерезис) и вихревыми токами и практически не зависят от тока. Электрические потериРЭв меди зависят от активных сопротивлений обмотокR1иR2, нагрузки и токовI1,I2в первичной и во вторичной обмотках и в соответствии с законом Джоуля-Ленца определяются соотношением

Суммарные потери в трансформаторе определяются по формуле

Что такое трансформатор: устройство, принцип работы, схема и назначение

Может быть, кто-то думает, что трансформатор – это что-то среднее между трансформером и терминатором. Данная статья призвана разрушить подобные представления.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Трансформатор – статическое электромагнитное устройство, предназначенное для преобразования переменного электрического тока одного напряжения и определенной частоты в электрический ток другого напряжения и той же частоты.

Работа любого трансформатора основана на явлении электромагнитной индукции, открытой Фарадеем.

Назначение трансформаторов

Разные виды трансформаторов используются практически во всех схемах питания электрических приборов и при передаче электроэнергии на большие расстояния.

Электростанции вырабатывают ток относительно небольшого напряжения – 220, 380, 660В. Трансформаторы, повышая напряжение до значений порядка тысяч киловольт, позволяют существенно снизить потери при передаче электроэнергии на большие расстояния, а заодно и уменьшить площадь сечения проводов ЛЭП.

Непосредственно перед тем как попасть к потребителю (например, в обычную домашнюю розетку), ток проходит через понижающий трансформатор. Именно так мы получаем привычные нам 220 Вольт.

Самый распространенный вид трансформаторов – силовые трансформаторы. Они предназначены для преобразования напряжения в электрических цепях. Помимо силовых трансформаторов в различных электронных приборах применяются:

  • импульсные трансформаторы;
  • силовые трансформаторы;
  • трансформаторы тока.

Принцип работы трансформатора

Трансформаторы бывают однофазные и многофазные, с одной, двумя или большим количеством обмоток. Рассмотрим схему и принцип работы трансформатора на примере простейшего однофазного трансформатора.

Кстати, в других статьях можно почитать, что такое фаза и ноль в электричестве.

Из чего состоит трансформатор? Во простейшем случае из одного металлического сердечника и двух обмоток. Обмотки электрически не связаны одна с другой и представляют собой изолированные провода.

Одна обмотка (ее называют первичной) подключается к источнику переменного тока. Вторая обмотка, называемая вторичной, подключается к конечному потребителю тока.

Когда трансформатор подключен к источнику переменного тока, в витках его первичной обмотки течет переменный ток величиной I1. При этом образуется магнитный поток Ф, который пронизывает обе обмотки и индуцирует в них ЭДС.

Бывает, что вторичная обмотка не находится под нагрузкой. Такой режимы работы трансформатора называется режимом холостого хода. Соответственно, если вторичная обмотка подключена к какому-либо потребителю, по ней течет ток I2, возникающий под действием ЭДС.

Величина ЭДС, возникающей в обмотках, напрямую зависит от числа витков каждой обмотки. Отношение ЭДС, индуцированных в первичной и вторичной обмотках, называется коэффициентом трансформации и равно отношению количества витков соответствующих обмоток.

Путем подбора числа витков на обмотках можно увеличивать или уменьшать напряжение на потребителе тока с вторичной обмотки.

Идеальный трансформатор

Идеальный трансформатор – трансформатор, в котором отсутствуют потери энергии. В таком трансформаторе энергия тока в первичной обмотке полностью преобразуется сначала в энергию магнитного поля, а далее – в энергию вторичной обмотки.

Конечно, такого трансформатора не существует в природе. Тем не менее, в случае, когда теплопотерями можно пренебречь, в расчетах удобно пользоваться формулой для идеального трансформатора, согласно которой мощности тока в первичной и вторичной обмотках равны.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Потери энергии в трансформаторе

Коэффициент полезного действия трансформаторов достаточно высок. Тем не менее, в обмотке и сердечнике происходят потери энергии, приводящие к тому, что температура при работе трансформатора повышается. Для трансформаторов небольшой мощности это не представляет проблемы, и все тепло уходит в окружающую среду – используется естественное воздушное охлаждение. Такие трансформаторы называют сухими.

В более мощных трансформаторах воздушного охлаждения оказывается недостаточно, и применяется охлаждение маслом. В этом случае трансформатор помещается в бак с минеральным маслом, через которое тепло передается стенкам бака и рассеивается в окружающую среду. В трансформаторах высоких мощностей дополнительно применяются выхлопные трубы – если масло закипает, образовавшимся газам нужен выход.

Конечно, трансформаторы не так просты, как может показаться на первый взгляд – ведь мы рассмотрели принцип действия трансформатора кратко. Контрольная по электротехнике с задачами на расчет трансформатора внезапно может стать настоящей проблемой. Специальный студенческий сервис всегда готов оказать помощь в решении любых проблем с учебой! Обращайтесь в Zaochnik и учитесь легко!

Ссылка на основную публикацию