Принцип работы и подключение индуктивных датчиков

Принцип работы и виды индуктивных датчиков, способы подключения

Работа на промышленных предприятиях требует внедрения автоматической системы управления. С этой целью применяется разное оборудование, способное обеспечить бесперебойное функционирование производственных машин. Для контроля металлических объектов не редко используют бесконтактные индуктивные датчики, обладающие как положительными, так и отрицательными качествами. Но главное, что они отличаются небольшими размерами и прекрасно выполняют возложенные функции, поэтому пользуются популярностью и у производителей бытовой и даже медицинской техники.

Общее описание и назначение

Индуктивным датчиком принято называть устройство, способное преобразовывать механические перемещений контролируемых объектов в электрический сигнал. Представляет собой одну или несколько катушек индуктивности, объединенных с магнитопроводом и подвижным якорем, который регистрирует измерения линейного или углового размера и, перемещаясь, влияет на показатель индуктивности, изменяя ее в одну или другую сторону. Благодаря такой особенности, бесконтактные датчики активно используются в качестве элементов контроля положения металлических объектов.

По схеме построения индукционные датчики принято разделять только на 2 отдельных вида: одинарные и дифференцированные.

Одинарные

Устройства только с одним магнитопроводом. Такая схема обычно применяется при разработке бесконтактных выключателей.

Дифференциальные

Отличаются наличием сразу 2-ух магнитопроводов, каждый из которых специально сделанных в виде «ш». Это позволяет взаимокомпенсировать воздействие, оказываемое на сердечник, повышая таким образом точность производимых измерений. По сути, схема представляет из себя систему из 2-ух датчиков, соединенных общим якорем.

Устройство и схема

Индукционный датчик, как и любое электронное устройство, состоит из связанных друг с другом узлов, обеспечивающих бесперебойность его работы. В качестве основных элементов аппарата можно выделить следующее.

Генератор

Ключевой задачей генератора является создание магнитного поля, на основе которого, в частности, строится принцип действия индукционного датчика, а также образуются зоны активности с объектом.

Триггер Шмидта

Триггер Шмидта представляет собой отдельный элемент, основным назначением которого считается обеспечение гистерезиса в процессе переключения устройства.

Усилитель

Усилительное устройство используется в качестве элемента, способного повышать значение амплитуды импульса, что позволяет сигналу быстрее достигать необходимого параметра.

Специальный индикатор

Диодный индикатор, свидетельствующий о фактическом состоянии контроллера. Кроме того, светодиод используется для обеспечения достаточного контроля функционирования индукционного датчика, а также, чтобы обеспечить достаточную оперативность в процессе настройки.

Компаунд

Компаунд предназначается для защиты устройства, поскольку может предотвратить попадание жидкости, в частности воды, внутрь корпуса индукционного датчика, а также снижает риск загрязнения оборудования, так как пыль может спровоцировать его поломку.

Принцип работы

Принцип действия основывается на изменениях амплитудного значения колебаний генераторного узла при попадании в активную зону устройства объекта определенных размеров. В процессе подачи электропитания на концевик оборудования в районе его чувствительной части формируется изменяющееся магнитное поле. Оно наводит в находящемся в рабочей зоне датчика материале вихревые токи, ведущие к изменению амплитуды электромагнитных колебаний.

В результате начнет вырабатываться выходной сигнал, который в процессе может изменяться в зависимости от фактического расстояния между устройством и объектом контроля.

Параметры

Чтобы контролировать функциональность индукционного датчика, а также определять уровень его сигналов, надо разбираться в параметрах устройства.

Напряжение питания

Представляет собой диапазон допустимого напряжения, в рамках которого устройство работает корректно.

Минимальный ток переключения

Это минимально возможное значение электрического тока, которое обязательно должно поступать к датчику для обеспечения его работы.

Рабочие расстояния

Это максимально допустимое расстояние от устройства до железного квадрата миллиметровой толщины. При этом данное значение уменьшается, если используется другой материал.

Частота переключения

Это максимально возможное количество переключений, которые можно сделать в течение одной секунды.

Способ подключения

Вариант подключения любого бесконтактного датчика зависит от примененной в процессе его производства схемы построения.

Трехпроводные

Трехпроводные имеют 3 проводника, 2 из которых предназначаются для обеспечения устройства питанием, а третий применяется для подключения к нагрузке. Она, в зависимости от использованной при разработке структуры, может подсоединяться к аноду либо катоду источника напряжения электрического тока.

Четырехпроводные

Четырехпроводные индукционные датчики отличаются наличием четырех проводников: 2 провода идут на питание, а другие 2 — на загрузку.

Двухпроводные

Двухпроводные устройства подключаются прямо в нагрузочную цепь. Это самый элементарный вариант, но и он обладает отдельными особенностями. Данный способ для нагрузки требует номинальное сопротивление, если же его значение окажется больше или меньше, тогда индукционный датчик не сможет корректно работать.

Внимание! При подключении устройства к источнику постоянного тока следует помнить о полярности выводов.

Пятипроводные

Пятипроводной отличается от четырехпроводного только наличием пятого проводника, который позволяет выбирать режим работы устройства.

Цветовая маркировка

Все электротехническое оборудование, в том числе проводники, обязательно имеет цветовую маркировку. Ее принято наносить для удобства последующих монтажных работ и дальнейшего обслуживания. Это правило должно соблюдаться и в случае с индукционными датчиками. Их выходные проводники маркируются следующими цветами:

  • минус обычно указывается синим;
  • плюс — красным;
  • выход — черным;
  • белый — дополнительный выход или же вход управления, что определяется типом используемого датчика.

Погрешности

Погрешности в процессе преобразования диагностических значений оказывают влияние на способности индукционных датчиков выдавать достоверную информацию. К основным из них можно отнести следующие.

Электромагнитная

Данную погрешность принято учитывать только в качестве случайной величины. Как правило, она возникает в ходе индуцирования ЭДС в индукционной катушке в результате внешнего воздействия сторонними магнитными полями. Это происходит в процессе производства из-за силовых электроустройств. Они образуют магнитные поля, что впоследствии и формирует электромагнитную погрешность.

От температуры

Эта погрешность тоже выступает в качестве случайного значения, поскольку работа большого числа элементов индукционного датчика напрямую зависит от температурных показателей, поэтому это ключевая величина, которая даже учитывается в процессе проектировки подобного оборудования.

Магнитной упругости

Обычно такая погрешность может проявляться как следствие нестабильности деформации магнитопровода устройства в процессе сборки самого датчика, а также при деформационных изменениях во время работы. Кроме того, оказываемое нестабильным электронапряжением воздействие на магнитопровод оборудования вызывает снижение качества передаваемого сигнала на выходе.

Деформация элементов

Данная погрешность, как правило, проявляется в результате воздействия измеряющей силы на значение деформации частей индукционного датчика, а также под влиянием усилий, оказываемых на нестабильные деформирующие процессы. Кроме того, не меньшее влияние на нее могут оказывать люфты и зазоры, образовавшиеся в подвижных элементах конструкции устройства.

Кабеля

Такая погрешность обычно проявляется от непостоянного значения сопротивления, в случае деформации самого провода и под влиянием температуры. Также подобным образом может сказаться наводка внешними полями ЭДС в кабеле.

Старение

Данная погрешность может проявляться при износе движущихся элементов самого устройства, а также в случае постоянно изменяющихся магнитных свойств используемого магнитопровода. Ее принято считать, строго говоря, случайным значением. В процессе определения данной погрешности учитывают кинематику конструкции индукционного датчика, а во время проектирования подобного оборудования максимальный эксплуатационный срок рекомендуется определять только при работе в обычном режиме, чтобы при этом износ не успел превысить установленного значения.

Технологии

Погрешности технологии проявляются в случае отклонений от технического процесса производства, при явном разбросе технических параметров катушек и остальных элементов во время сборки, влиянии допущенных зазоров при соединении устройства. Для ее измерения принято использовать механическое измерительное оборудование.

Сферы использования

Возможная область применения индукционных датчиков настолько велика, что позволяет использовать их не только в быту и автомобилестроении, но и в промышленности с робототехникой, а также медицине.

Медицинские аппараты

Индуктивные датчики широко используются при производстве медицинского оборудования, поскольку магнитные свойства устройства позволяют регистрировать легочную вентиляцию, параметры вибрации, а также снимать баллистокардиограммы.

Бытовая техника

В бытовом плане датчики могут выступать в качестве приспособления контроля водоснабжения, уровня освещения и положения двери (закрыта или открыта), поэтому используются при производстве, к примеру, стиральных машин и другой бытовой техники. Кроме того, устройства применяются в процессе создания элементов «умного дома».

Автомобильная промышленность

Используется индукционный датчик и в автостроении, выступая в роли контроллера, определяющего положение коленчатого вала. При приближении металлического объекта, в данном случае, зуба шестерни, к устройству, генерируемое встроенным постоянным магнитом магнитное поле увеличивается, что приводит к наведению в катушке переменного напряжения.

Внимание! Некоторые производители для повышения эффективности стараются изменить конструкцию индукционного датчика, к примеру, используя внешние магниты для его активации.

Робототехническое оборудование

В случае с робототехникой, индуктивным датчикам нашли применение в производстве беспилотных аппаратов и промышленных роботов для повышения их чувствительности к препятствиям и способности распознавать объекты, а также устройствах, для которых важна самобалансировка.

Промышленная техника регулирования и измерения

Широко используются в работе систем транспортеров, упаковочных аппаратов и сборочных линий, а еще в составе всех видов станкового оборудования и запорной арматуры. Также индуктивные датчики помогают контролировать мелкие и крупные элементы промышленной техники (зубцы шестеренок, стальные флажки, штампы), объекты производства (металлические изделия, листы металла, крышки) и т.п. Кроме того, при их подключении к импульсным счетчикам можно в результате получить элементарное, но крайне эффективное считывающее устройство.

Индукционные датчики следующего поколения

Благодаря новым разработкам в этой области, были созданы усовершенствованные модели индукционных датчиков следующего поколения. Принцип работы остался прежним, однако подверглась тщательной переработке конструкция устройства. В результате датчики теперь оснащаются тонкими платами, распечатанными на 3D-принтерах, и современной цифровой электроникой. Кроме того, их производят на гибких подложках, что избавляет от необходимости использования традиционных кабелей и разъемов. Так что пользоваться устройствами можно даже в тяжелых погодных условиях.

К преимуществам новых разработок можно отнести следующее:

  • снижение стоимости и веса, более компактные размеры;
  • возможность выбора практически любых форм-факторов;
  • повышение точности реагирования на металлические объекты;
  • возможность проведения замеров, связанных со сложной геометрией, в двух или трех измерениях;
  • упрощение конструкции;
  • возможность устанавливать несколько индукционных датчиков близко друг к другу из-за высокой электромагнитной совместимости.

Все это позволило увеличить эффективность и доступность устройства, а также расширить сферу его применения.

Индуктивный датчик – устройство, принцип работы, параметры и классификация

Различного типа датчики сегодня широко применяются в промышленности. Без них ни один технологический процесс не обходится. Существует несколько их видов, нас же в этой статье будет интересовать индуктивный датчик. Поэтому разберемся, для чего он необходим, где применяется, его устройство и принцип работы.

Бесконтактные индуктивные датчики

По сути, датчик данного типа – это прибор, принцип работы которого основан на изменениях индуктивности катушки и сердечника. Кстати, отсюда и само название. Изменения индукции происходят из-за того, что в магнитное поле катушки проникает металлический предмет, изменяя его. А соответственно и изменяется схема подключения, в которой основную роль играет компаратор. Он при изменении индукции подает сигнал на реле или конечный транзистор (выключатель), что приводит к отключению подачи электрического тока.

Поэтому основное предназначение данного прибора – это измерять перемещение части оборудования. И при превышении пределов проходимости отключать его. При этом у датчиков есть свои пределы перемещения, которые варьируются в диапазоне от 1 микрона до 20 миллиметров. Кстати, именно поэтому этот прибор называют и индуктивным датчиком положения.

Достоинства и недостатки

Начнем с достоинств:

  • Простота конструкции, достаточно высокая его надежность. Полное отсутствие скользящих контактов, которые быстро выходят из строя.
  • Можно использовать для подключения в электрические сети с промышленной частотой.
  • Высокая чувствительность.
  • Может выдерживать большую выходную мощность.

Устройство индуктивного датчика

  • Напряжение и точность работы датчика взаимосвязаны, поэтому нестабильное напряжение в сети становится причиной разброса пределов реагирования.

Параметры индуктивного датчика

Один из параметров уже описывался выше – это диапазон срабатывания. Хотя, как утверждают специалисты, он не является важным, но именно по нему и делают выбор. Все дело в том, что в паспорте изделия указываются номинальные параметры напряжения при работе прибора в температурном режиме +20С. Постоянное напряжение составляет 24 вольт, переменное – 230 вольт. Как вы понимаете, в таких условиях индукционный датчик обычно не работает, а если и работает, то редко. При этом в качестве объекта, который будет изменять индуктивность катушки прибора, должна выступать стальная пластина, ее ширина должна быть равна трем диапазонам срабатывания и толщиною 1 мм.

На практике же за основу выбора берут два показателя диапазона срабатывания:

Показания первого отличаются от номинального параметра в пределах ±10%. При этом температурный диапазон расширяется от +18С до +28С. Второй определяется, как ±10% от первого при температурном режиме от 25 до 70С. И если при первом параметре используется номинальное напряжение в сети, то при втором присутствует разброс от 85% до 110% от номинала.

Есть еще один параметр, который связан с зоной срабатывания. Это гарантированный предел. Его нижняя часть равна «0», а верхняя 81% от номинального диапазона.

Читайте также:  Как сделать подсветку для зеркала в спальню или прихожую своими руками

Необходимо учитывать и такие параметры, как гистерезис и повторяемость. Что такое гистерезис в этом случае? По сути, это расстояние между дальними позициями срабатывания датчика. Оптимальное его значение – это 20% от эффективного диапазона срабатывания.

Не последнее значение имеет и материал, из которого изготавливается объект слежения (перемещения). Оптимальный вариант – сталь 37, ее коэффициент редукции равен «1». Все остальные металлы имеют меньший коэффициент. К примеру, нержавейка – 0,85, медь – 0,3. Как понять, на что влияет коэффициент редукции? Для примера возьмем медную пластину. То есть, получается так, что диапазон срабатывания будет равно 0,3, умноженному на полезный диапазон срабатывания. Достаточно низкий показатель.

Перечислим и другие не столь важные параметры6

  • Постоянное напряжение имеет диапазоны: 10-30, 10-60, 5-60 вольт. Переменное 98-253 вольт.

Внимание! Производители сегодня предлагают так называемые универсальные индукционные датчики, которые могут работать и от сети переменного тока, и от сети постоянного.

Способ подключения

Существует несколько разновидностей индуктивных датчиков, которые имеют разное количество проводов подключения.

  • Двухпроводные. Включаются прямо в цепь токовой нагрузки. Самый простой вариант, но очень капризный. Для него нужен номинальное сопротивление нагрузке. Если он снижается или увеличивается, прибор начинает работать некорректно. При подключении к сети постоянного тока, необходимо соблюдать полярность.
  • Трехпроводной. Это самые распространенные индукционные датчики, в которых два провода подключаются к напряжению, один к нагрузке.
  • Четырех-, пятипроводные. В них два провода подключаются к нагрузке. Пятый провод – это возможность выбора режима работы.

Цветовая маркировка выводов

Все, что связано с электрическими сетями, особенно проводниками, обязательно обозначается цветовой маркировкой. Делается это для удобства проведения монтажа и обслуживания. Индуктивный датчик этого также не избежал. В нем выходы обозначены определенными стандартными цветами:

  • Минус – синий цвет.
  • Плюс – красный.
  • Выход – черный.
  • Бывает и второй выход, он белого цвета, который может быть и входом в систему управления. Об этом производитель обязательно информирует в инструкции.

Разновидности индукционных датчиков

И последнее – это конструктивные особенности, которые касаются корпуса датчика. Он может иметь цилиндрическую или прямоугольную форму. Изготавливается из металлических сплавов или пластика. Чаще всего в промышленности используются цилиндрические приборы диаметром 12 или 18 мм. Хотя есть в этой размерной линейке и другие параметры: 4, 8, 22 и 30 мм.

Индуктивные датчики. Виды. Устройство. Параметры и применение

Индуктивные датчики – преобразователи параметров. Их работа заключается в изменении индуктивности путем изменения магнитного сопротивления датчика.

Большую популярность индуктивные датчики получили на производстве для измерения перемещений в интервале от 1 микрометра до 20 мм. Индуктивный датчик можно применять для замера уровней жидкости, газообразных веществ, давлений, различных сил. В этих случаях диагностируемый параметр преобразуется чувствительными компонентами в перемещение, далее эта величина поступает на индуктивный преобразователь.

Для замера давления применяются чувствительные элементы. Они играют роль датчиков приближения, предназначенные для выявления разных объектов бесконтактным методом.

Виды и устройство

Индуктивные датчики разделяются по схеме построения на 2 вида:

  1. Одинарные датчики.
  2. Дифференциальные датчики.

Первый вид модели имеет одну ветвь измерения, в отличие от дифференциального датчика, у которого две измерительные ветви.

В дифференциальной модели при изменении диагностируемого параметра изменяются индуктивности 2-х катушек. При этом изменение осуществляется на одинаковое значение с противоположным знаком.

Индуктивность катушки вычисляется по формуле: L = WΦ/I

Где W– количество витков; Ф – магнитный поток; I – сила тока, протекающего по катушке. Сила тока взаимосвязана с магнитодвижущей силой следующим отношением: I = Hl/W

Из этой формулы получаем: L = W²/Rm
Где R m = H*L/Ф – магнитное сопротивление.

Работа одинарного датчика заключается в свойстве дросселя, изменять индуктивность при увеличении или уменьшении воздушного промежутка.

Конструкция датчика включает в себя ярмо (1), витки обмотки (2), якорь (3), который фиксируется пружинами. По сопротивлению поступает переменный ток на обмотку. Сила тока в нагрузочной цепи вычисляется:

L – индуктивность датчика, rd – активное дроссельное сопротивление. Оно является постоянной величиной, поэтому изменение силы тока I может осуществляться только путем изменения составляющей индуктивности XL=IRн, зависящей от размера воздушного промежутка δ.

Каждой величине зазора соответствует некоторое значение тока, определяющего падение напряжения на резисторе Rн: Uвых=I*Rн – является сигналом выхода датчика. Можно определить следующую зависимость U вых = f (δ), при одном условии, что зазор очень незначительный и потоки рассеивания можно не учитывать, как и магнитное сопротивление металла Rмж в сравнении с магнитным сопротивлением зазора воздуха Rмв.

Окончательно получается выражение:

На практике активное сопротивление цепи несравнимо ниже индуктивного. Поэтому формула принимает вид:

Из недостатков одинарных можно отметить:
  • При эксплуатации датчика на якорь воздействует сила притяжения к сердечнику. Эта сила не уравновешена никакими методами, поэтому она снижает точность функционирования датчика, и вносит некоторый процент погрешности.
  • Сила нагрузочного тока зависит от амплитуды напряжения и ее частоты.
  • Чтобы измерить перемещение в двух направлениях, нужно установить первоначальное значение зазора, что доставляет определенные неудобства.

Дифференциальные индуктивные датчики объединяют в себе два нереверсивных датчика и изготавливаются в виде некоторой системы, которая состоит из 2-х магнитопроводов, имеющих два отдельных источника напряжения. Для этого чаще всего применяется разделительный трансформатор (5).

Дифференциальные датчики классифицируются по форме сердечника:
  • Индуктивные датчики с Ш-образной формой магнитопровода, выполненного в виде листов электротехнической стали. При частоте более 1 килогерца для сердечника используют пермаллой.
  • Цилиндрические индуктивные датчики с круглым магнитопроводом.

Форму датчика выбирают в зависимости от конструкции и ее сочетания с механизмом. Использование магнитопровода Ш-образной формы является удобным для сборки катушки и снижения габаритных размеров индуктивного датчика.

Для функционирования дифференциального датчика применяют питание от трансформатора (5), который имеет вывод от средней точки. Между этим выводом и общим проводом катушек подключают прибор (4). При этом воздушный промежуток находится в пределах от 0,2 до 0,5 мм.

При расположении якоря в средней позиции при равных промежутках индуктивные сопротивления обмоток (3 и 3′) равны. Значит, значения токов катушек также одинаковы, и общий полученный ток в устройстве равен нулю.

При малом отклонении якоря в любую сторону изменяется значение воздушных промежутков и индуктивностей. Поэтому прибор определяет ток разности I1-I2, который определен функцией перемещения якоря от средней позиции. Разность токов чаще всего определяется магнитоэлектрическим устройством (4), выполненным по типу микроамперметра со схемой выпрямления (В) на входе.

Полярность тока не зависит от изменения общего сопротивления катушек. При применении фазочувствительных схем выпрямления можно определить направление перемещения якоря от средней позиции.

Параметры
  • Одним из параметров индуктивных датчиков является диапазон срабатывания . По этому параметру выбирают датчики, однако он не настолько важен. В инструкции по датчику даны номинальные параметры питания при эксплуатации устройства при температуре +20 градусов. Постоянное напряжение для датчика – 24 В, а переменное 230 В. Обычно датчик работает в совершенно других условиях.
На практике при подборе датчика важны два показателя интервала срабатывания:

Показания первого вычисляются как +10% от 2-го при температуре 25-70 градусов. Показания 2-го отличаются от номинала на 10%. Интервал температуры при этом увеличивается с 18 до 28 градусов. Если при втором параметре применяется номинальное напряжение, то при первом есть разброс 85-110%.

  • Другим параметром является гарантированный предел срабатывания . Он колеблется от нуля до 81% от номинала.
  • Также следует учитывать параметры: повторяемость и гистерезис , который равен расстоянию между конечными позициями работы датчика. Его оптимальная величина равна 20% от эффективного интервала срабатывания.
  • Нагрузочный ток . Изготовители иногда производят датчики специального исполнения на 500 миллиампер.
  • Частота отклика . Этот параметр определяет наибольшую величину возможности переключения в герцах. Основные промышленные датчики имеют частоту отклика 1000 герц.
Методы подключения на схемах

Имеется несколько видов индуктивных датчиков с различным числом проводов для подключения. Рассмотрим основные виды подключений разных индуктивных датчиков.

  • Двухпроводные индуктивные датчики подключаются непосредственно в нагрузочную цепь. Это наиболее простой способ, однако в нем есть особенности. Для такого способа для нагрузки требуется номинальное сопротивление. Если это сопротивление будет больше или меньше, то устройство функционирует некорректно. При включении датчика на постоянный ток нельзя забывать о полярности выводов.
  • Трехпроводные индуктивные датчики наиболее популярны. В них имеется два проводника для подключения питания, а один для нагрузки.
  • Четырехпроводные и пятипроводные индуктивные датчики. У них два провода на питание, другие два на нагрузку, пятый проводник для выбора режима эксплуатации.
Цветовая маркировка

Маркировка проводников цветом является очень удобной для осуществления обслуживания и монтажа датчиков. Их выходные проводники промаркированы определенным цветом:

  • Минус – синий.
  • Плюс – красный.
  • Выход – черный цвет.
  • Второй проводник выхода – белый цвет.
Погрешности

Погрешность преобразования диагностируемого параметра влияет на способность выдачи информации индуктивным датчиком. Суммарная погрешность состоит из множества различных погрешностей.

  • Электромагнитная погрешность является случайной величиной. Она появляется вследствие индуцирования ЭДС в катушке датчика наружными магнитными полями. На производстве возле силовых электрических устройств существуют магнитные поля чаще всего частотой 50 герц.
  • Погрешность от температуры также является случайным значением, так как работа большого количества элементов датчика зависит от температуры и является значительной величиной, учитываемой при проектировании датчиков.
  • Погрешность магнитной упругости. Она появляется от нестабильности деформаций сердечника при сборке прибора, а также из-за изменения деформаций при работе. Влияние нестабильности напряжений в магнитопроводе образует нестабильность сигнала на выходе.
  • Погрешности устройства появляются по причине влияния измеряющей силы на деформации элементов датчика, а также влияния скачка усилия измерения на нестабильность деформации. Также на погрешность влияют люфты и зазоры в подвижных частях конструкции датчика.

Погрешность кабеля образуется от непостоянной величины сопротивления, деформации кабеля и его температуры, наводок электродвижущей силы в кабеле от внешних полей.

Электромагнитные параметры материалов и их свойства со временем меняются. Чаще всего процессы изменения свойств материалов происходят в первые 200 часов после термообработки сердечника магнитопровода. Далее эти свойства остаются теми же, и не влияют на полную погрешность датчика.

Описание и принцип работы индуктивных бесконтактных датчиков

Работа на производственных предприятиях требует частичной или полной автоматизации системы. Для этого используются различные приспособления, обеспечивающие бесперебойное функционирование. Приспособления из металла довольно часто контролируют индуктивные бесконтактные датчики, имеющие свои преимущества и недостатки. Они имеют небольшой размер и хорошо выполняют свою функцию при условии правильного подключения.

Общие сведения

Индукционный датчик представляет собой специальное приспособление, относящееся к бесконтактным. Это значит, что для определения местоположения объекта в пространстве ему не требуется непосредственный контакт с ним. Благодаря такой технологии, возможна автоматизация производственного процесса.

Как правило, приспособление применяется в различных линиях и системах на крупных заводах и фабриках. Его также можно использовать в качестве конечного выключателя. Прибор отличается высоким качеством и надежностью, работает даже в сложных условиях. Оказывает воздействие только на металлические предметы, поскольку другие материалы к нему нечувствительны.

Приспособление довольно устойчиво к агрессивным химическим веществам, широко применяется в машиностроительной, пищевой и текстильной промышленности. Аэрокосмическая, военная и железнодорожная отрасль также не обходится без этих датчиков.

Важность прибора делает его востребованным, поэтому множество компаний по всему миру выпускает различные модели со стандартным и расширенным набором функций, в разной ценовой категории.

Устройство прибора

Индуктивный датчик состоит из нескольких взаимосвязанных между собой узлов, которые и обеспечивают его бесперебойную работу. Основные детали приспособления следующие:

  1. Генератор считается основным элементом прибора, поскольку отвечает за образование электромагнитного поля, необходимого для его функционирования.
  2. Триггер Шмидта отвечает за переработку информации, полученной после включения в работу генератора и передачу другим узлам.
  3. Обязательная деталь каждого датчика — усилитель, необходимый для передачи сигнала на большие расстояния.
  4. Специальный индикатор на светодиодах позволяет человеку, отвечающему за работу устройства, контролировать его функционирования и распознавать сигнал при включении, а также изменении настроек.
  5. Компаунд — специальная деталь, предотвращающая попадание различных мелких частиц внутрь приспособления. Играет важную роль, поскольку любые посторонние предметы могут нарушить работу устройства.

Все элементы расположены в корпусе, изготовленном из латуни или полиамида. Эти материалы считаются очень прочными для того, чтобы защитить сердцевину от отрицательного воздействия условий производства. Благодаря надежности конструкции, датчик способен выдержать значительную нагрузку и при этом корректно функционировать.

Принцип работы

Благодаря специальному генератору, выдающему особые колебания, осуществляется работа устройства. При попадании в поле его действия предмета, сделанного из металла, подается сигнал на блок управления.

Работа приспособления начинается после включения, которое даёт толчок к образованию магнитного поля. Это поле в свою очередь оказывает влияние на вихревые токи, меняющие амплитуду колебаний генератора, который первым реагирует на любые изменения.

Как только поступает сигнал, начинается обработка его в других узлах устройства. Сила этого сигнала во многом зависит от размера предмета, попавшего в поле действия приспособления, а также расстояния, на котором он находится. Следующим этапом будет преобразование аналогового сигнала в логический. Только так возможно точно определить его значение.

Особую роль играют такие датчики на производстве, где металлические детали должны идти по линии в определенном положении. Прибор может фиксировать его и при обнаружении любого, даже незначительного отклонения сигнализирует на главный пульт управления.

Как правило, чтение результатов функционирования устройства осуществляет специалист, выполняющий также роль контролера, наблюдающего за бесперебойной работой всей системы.

Основные определения

Для контроля работы устройства и чтения его сигналов существует несколько определений. Наиболее важными считаются следующие:

  1. Активная зона представляет собой участок, на котором в наибольшей степени проявляется воздействие магнитного поля, излучаемого генератором. Располагается она непосредственно перед чувствительной поверхностью датчика, где отмечается самый высокий и интенсивный уровень концентрации. Обычно этот участок определить несложно, поскольку его диаметр почти совпадает с диаметром приспособления.
  2. Номинальное расстояние для переключения считается теоретическим параметром, поскольку он не учитывает некоторые производственные особенности каждого конкретного предприятия. Значение его приблизительно, так как в расчет не берется температура, давление и напряжение в определенной зоне.
  3. Рабочий зазор — один из важнейших параметров, определяющих настройки приспособления, при которых оно будет давать наиболее корректные сигналы без каких-либо сбоев. Обычно для определения этих значений проводится тестирование устройства в разных условиях и выявление среднего показателя.
  4. Поправочный коэффициент также должен учитываться, поскольку именно от него отталкивается специалист при выборе настроек прибора. Показание варьируется в зависимости от примесей, которые присутствуют в металлическом предмете. Обычно отклонение наблюдается при использовании различных металлических сплавов.

Благодаря этим определениям, возможно настроить приспособление для получения максимально точных данных, играющих важную роль в производственном процессе.

Преимущества и недостатки

Индукционные датчики имеют свои достоинства и недостатки, как и любое другое устройство. Главным преимуществом считается простота конструкции, не требующая сложной настройки и не нуждающаяся в особых условиях для монтирования. Приспособление не имеет скользящих контактов, сделано из прочного материала и может на протяжении длительного времени работать без перерыва.

Стоит также отметить, что прибор очень редко выходит из строя, и ремонт его не представляет сложности. Именно поэтому его часто устанавливают на предприятиях, где необходим почти круглосуточный контроль за производственным процессом. Бесконтактное подключение позволяет без проблем осуществлять соединение с промышленной системой напряжения.

Важным преимуществом считается высокая чувствительность, позволяющая устанавливать датчики на производстве, где работают с металлическими предметами из разных сплавов.

Несмотря на все достоинства приспособления, существуют и некоторые недостатки. Наиболее важным считаются погрешности, которые прибор выдает в работе. Нелинейный тип погрешности проявляется вследствие того, что прибор имеет свой показатель индуктивной величины, который может отличаться от значения тех предметов, на которые он реагирует. Именно поэтому датчик может реагировать на металл некорректно и подавать неверные сигналы.

Часто встречается температурная погрешность, связанная со значительным понижением или повышением температуры в производственном помещении. Инструкция к прибору предполагает его правильное функционирование при показателе +25 градусов. При отклонении значения в ту или иную сторону нарушается работа приспособления.

Одной из случайных погрешностей считается изменение показаний датчика вследствие воздействия на него электромагнитного поля других приборов. Для того чтобы избежать подобных ситуаций, на всех производствах установлен стандарт частоты электроустановок, составляющий 50 Гц. В этом случае риск возникновения погрешности из-за постороннего электромагнитного излучения снижается к минимуму. Исключить любые нарушения в работе устройства можно путем предварительной проработки деталей.

Способы подключения

В зависимости от типа устройства, отличаются и способы его подключения, поскольку определенные разновидности имеют разное количество проводов. Двухпроводные считаются наиболее простым, но и самым проблематичным вариантом. Включаются непосредственно в цепь токовой нагрузки. Для правильного проведения манипуляции необходимо номинальное сопротивление нагрузке. В случае его снижения или повышения приспособление начинает функционировать неправильно. Важным моментом будет подключение к сети, при котором необходимо соблюдать полярность.

Трехпроводные считаются наиболее популярными и простыми в подключении. Одни провода подсоединяются к нагрузке, а два других к источнику напряжения. Благодаря этому исключается вероятность реакции прибора на номинальное сопротивление в виде некорректной работы.

Существуют также датчики с четырьмя и пятью проводами. При их установке подключение двух проводов осуществляется к источнику напряжения, два — к нагрузке. Если присутствует пятый шнур, то есть возможность выбора подходящего режима работы.

Обычно провода обозначаются разными цветами с целью облегчения монтажа и последующего обслуживания датчика. Минус и плюс обозначены синим и красным цветом соответственно. Выход всегда маркируется черным цветом. Существуют устройства, в которых два выхода. Второй обычно белый и может служить также для входа. Эти нюансы указаны в инструкции по эксплуатации индуктивного датчика.

Корпус устройства может быть изготовлен из разного материала, иметь цилиндрическую, квадратную или прямоугольную форму. Наиболее распространенным считается первый вариант.

Правила выбора

Индукционный датчик считается важным элементом на многих предприятиях, поэтому к его выбору следует подойти очень ответственно. Рекомендуется соблюдать следующие правила:

  • точное определение условий, при которых будет применяться устройство: температурный режим в помещении, влажность, наличие прямого солнечного света и электромагнитного излучения от других приспособлений;
  • скорость производственного процесса, которая будет влиять на корректную работу датчика;
  • точность самого приспособления, обещанная производителем, а также линейность;
  • надежность конструкции и качество материалов, предположительный срок службы и гарантия от компании;
  • класс защиты, используемый в процессе производства, который поможет предупредить поломки, нередко возникающие при неблагоприятных производственных условиях;
  • размеры приспособления также играют роль, поскольку миниатюрные датчики менее подвержены попаданию осколков и других частиц.

Важный параметр — стоимость прибора. Зависит она чаще всего от фирмы-производителя и некоторых дополнительных функций, которые встроены в датчик. Однако существенной разницы в работе у устройств из разной ценовой категории не отмечается.

Популярные модели

Сегодня на рынке представлено множество моделей индуктивных датчиков. Наиболее востребованными считаются различные приборы от российской компании ТЕКО. Они отличаются хорошим качеством, отличными техническими характеристиками, простотой монтажа и эксплуатации. Главное достоинство устройств компании — демократичная цена.

Стоимость простых моделей начинается с 850 рублей, и за эти деньги прибор работает без нареканий. Выпускаются и более дорогие датчики с ценой от 2 до 5 тысяч рублей. Они обычно устанавливаются на крупных производствах, где необходима высокая точность и бесперебойная работа.

Индукционный датчик считается одним из лучших бесконтактных устройств, применяемых на различных заводах, фабриках и других предприятиях. Высокое качество и точность прибора делает его востребованным и необходимым.

Индуктивные датчики. Разновидности, принцип работы

Индуктивный датчик приближения. Внешний вид

В промышленной электронике индуктивные, оптические и другие датчики применяются очень широко.

Долго и постоянно имею с ними дело, и вот решил написать статью, поделиться знаниями.

Статья будет обзорной (если хотите, научно-популярной). Приведены реальные инструкции к датчикам и ссылки на примеры.

Виды датчиков

Итак, что вообще такое датчик. Датчик – это устройство, которое выдаёт определённый сигнал при наступлении какого-либо определённого события. Иначе говоря, датчик при определённом условии активируется, и на его выходе появляется аналоговый (пропорциональный входному воздействию) или дискретный (бинарный, цифровой, т.е. два возможных уровня) сигнал.

Точнее можем посмотреть в Википедии: Датчик (сенсор, от англ. sensor) — понятие в системах управления, первичный преобразователь, элемент измерительного, сигнального, регулирующего или управляющего устройства системы, преобразующий контролируемую величину в удобный для использования сигнал.

Там же и много другой информации, но у меня своё, инженерно-электронно-прикладное, видение вопроса.

Датчиков бывает великое множество. Перечислю лишь те разновидности датчиков, с которыми приходится сталкиваться электрику и электронщику.

Индуктивные. Активируется наличием металла в зоне срабатывания. Другие названия – датчик приближения, датчик положения, индукционный, датчик присутствия, индуктивный выключатель, бесконтактный датчик или выключатель. Смысл один, и не надо путать. По-английски пишут “proximity sensor”. Фактически это – датчик металла.

Оптические. Другие названия – фотодатчик, фотоэлектрический датчик, оптический выключатель. Такие применяются и в быту, называются “датчик освещённости”

Емкостные. Срабатывает на наличие практически любого предмета или вещества в поле активности.

Давления. Давления воздуха или масла нет – сигнал на контроллер или рвёт аварийную цепь. Это если дискретный. Может быть датчик с токовым выходом, ток которого пропорционален абсолютному давлению либо дифференциальному.

Концевые выключатели (электрический датчик). Это обычный пассивный выключатель, который срабатывает, когда на него наезжает или давит объект.

Датчики могут называться также сенсорами или инициаторами.

Пока хватит, перейдём к теме статьи.

Принцип работы индуктивного датчика

Индуктивный датчик является дискретным. Сигнал на его выходе появляется, когда в заданной зоне присутствует металл.

В основе работы датчика приближения лежит генератор с катушкой индуктивности. Отсюда и название. Когда в электромагнитном поле катушки появляется металл, это поле резко меняется, что влияет на работу схемы.

Поле индукционного датчика. Металлическая пластина меняет резонансную частоту колебательного контура

И схема, содержащая компаратор, выдаёт сигнал на ключевой транзистор или реле. Нет металла – нет сигнала.

Схема индуктивного npn датчика. Приведена функциональная схема, на которой: генератор с колебательным контуром, пороговое устройство (компаратор), выходной транзистор NPN, защитные стабилитрон и диоды

Большинство картинок в статье – не мои, в конце можно будет скачать источники.

Применение индуктивного датчика

Индуктивные датчики приближения применяются широко в промышленной автоматике, чтобы определить положение той или иной части механизма. Сигнал с выхода датчика может поступать на вход контроллера, преобразователя частоты, реле, пускателя, и так далее. Единственное условие – соответствие по току и напряжению.

Работа индуктивного датчика. Флажок движется вправо, и когда достигает зоны чувствительности датчика, датчик срабатывает.

Кстати, производители датчиков предупреждают, что не рекомендуется подключать непосредственно на выход датчика лампочку накаливания. О причинах я уже писал – ток при включении лампы значительно превышает номинальный.

Характеристики индуктивных датчиков

Чем отличаются датчики.

Почти всё, что сказано ниже, относится не только к индуктивным, но и к оптическим и ёмкостным датчикам.

Конструкция, вид корпуса

Тут два основных варианта – цилиндрический и прямоугольный. Другие корпуса применяются крайне редко. Материал корпуса – металл (различные сплавы) или пластик.

Диаметр цилиндрического датчика

Основные размеры – 12 и 18 мм. Другие диаметры (4, 8, 22, 30 мм) применяются редко.

Чтобы закрепить датчик 18 мм, нужны 2 ключа на 22 или 24 мм.

Расстояние переключения (рабочий зазор)

Это то расстояние до металлической пластины, на котором гарантируется надёжное срабатывание датчика. Для миниатюрных датчиков это расстояние – от 0 до 2 мм, для датчиков диаметром 12 и 18 мм – до 4 и 8 мм, для крупногабаритных датчиков – до 20…30 мм.

Количество проводов для подключения

Подбираемся к схемотехнике.

2-проводные. Датчик включается непосредственно в цепь нагрузки (например, катушка пускателя). Так же, как мы включаем дома свет. Удобны при монтаже, но капризны к нагрузке. Плохо работают и при большом, и при маленьком сопротивлении нагрузки.

2-проводный датчик. Схема включения

Нагрузку можно подключать в любой провод, для постоянного напряжения важно соблюдать полярность. Для датчиков, рассчитанных на работу с переменным напряжением – не играет роли ни подключение нагрузки, ни полярность. Можно вообще не думать, как их подключать. Главное – обеспечить ток.

3-проводные. Наиболее распространены. Есть два провода для питания, и один – для нагрузки. Подробнее расскажу отдельно.

4- и 5-проводные. Такое возможно, если используется два выхода на нагрузку (например, PNP и NPN (транзисторные), или переключающие (реле). Пятый провод – выбор режима работы или состояния выхода.

Виды выходов датчиков по полярности

У всех дискретных датчиков может быть только 3 вида выходов в зависимости от ключевого (выходного) элемента:

Релейный. Тут всё понятно. Реле коммутирует необходимое напряжение либо один из проводов питания. При этом обеспечивается полная гальваническая развязка от схемы питания датчика, что является основным достоинством такой схемы. То есть, независимо от напряжения питания датчика, можно включать/выключать нагрузку с любым напряжением. Используется в основном в крупногабаритных датчиках.

Транзисторный PNP. Это – PNP датчик. На выходе – транзистор PNP, то есть коммутируется “плюсовой” провод. К “минусу” нагрузка подключена постоянно.

Транзисторный NPN. На выходе – транзистор NPN, то есть коммутируется “минусовой”, или нулевой провод. К “плюсу” нагрузка подключена постоянно.

Можно чётко усвоить разницу, понимая принцип действия и схемы включения транзисторов. Поможет такое правило: Куда подключен эмиттер, тот провод и коммутируется. Другой провод подключен к нагрузке постоянно.

Ниже будут даны схемы включения датчиков, на которых будет хорошо видно эти отличия.

Виды датчиков по состоянию выхода (НЗ и НО)

Какой бы ни был датчик, один из основных его параметров – электрическое состояние выхода в тот момент, когда датчик не активирован (на него не производится какое-либо воздействие).

Выход в этот момент может быть включен (на нагрузку подается питание) либо выключен. Соответственно, говорят – нормально закрытый (нормально замкнутый, НЗ) контакт либо нормально открытый (НО) контакт. В иностранной аппаратуре, соответственно – NС и NО.

То есть, главное, что надо знать про транзисторные выходы датчиков – то, что их может быть 4 разновидности, в зависимости от полярности выходного транзистора и от исходного состояния выхода:

Контакты датчиков также могут быть с задержкой включения или выключения. Про такие контакты также сказано в статье про приставки выдержки времени ПВЛ. А почему датчики, отвечающие за безопасность, должны быть обязательно с НЗ контактами – см. статью про Цепи безопасности в промышленном оборудовании.

Кстати, если Вам вообще интересно то, о чем я пишу, подписывайтесь на получение новых статей и вступайте в группу в ВК!

Положительная и отрицательная логика работы

Это понятие относится скорее к исполнительным устройствам, которые подключаются к датчикам (контроллеры, реле).

ОТРИЦАТЕЛЬНАЯ или ПОЛОЖИТЕЛЬНАЯ логика относится к уровню напряжения, который активизирует вход.

ОТРИЦАТЕЛЬНАЯ логика: вход контроллера активизируется (логическая “1”) при подключении к ЗЕМЛЕ. Клемму S/S контроллера (общий провод для дискретных входов) при этом необходимо соединить с +24 В=. Отрицательная логика используется для датчиков типа NPN.

ПОЛОЖИТЕЛЬНАЯ логика: вход активизируется при подключении к +24 В=. Клемму контроллера S/S необходимо соединить с ЗЕМЛЕЙ. Используйте положительную логику для датчиков типа PNP. Положительная логика применяется чаще всего.

Существуют варианты различных устройств и подключения к ним датчиков, спрашивайте в комментариях, вместе подумаем.

Продолжение статьи – здесь >>>. Во второй части даны реальные схемы и рассмотрено практическое применение различных типов датчиков с транзисторным выходом.

Индуктивные датчики

Индуктивный датчик – это преобразователь параметрического типа, принцип действия которого основан на изменении индуктивности L или взаимоиндуктивности обмотки с сердечником, вследствие изменения магнитного сопротивления RМ магнитной цепи датчика, в которую входит сердечник.

Широкое применение индуктивные датчики находят в промышленности для измерения перемещений и покрывают диапазон от 1 мкм до 20 мм. Также можно использовать индуктивный датчик для измерения давлений, сил, уровней расхода газа и жидкости и т. д. В этом случае измеряемый параметр с помощью различных чувствительных элементов преобразуется в изменение перемещения и затем эта величина подводится к индуктивному измерительному преобразователю.

В случае измерения давлений, чувствительные элементы могут выполняться в виде упругих мембран, сильфонов, и т. д. Используются они и в качестве датчиков приближения, которые служат для обнаружения различных металлических и неметаллических объектов бесконтактным способом по принципу “да” или “нет”.

Достоинства индуктивных датчиков:

простота и прочность конструкции, отсутствие скользящих контактов;

возможность подключения к источникам промышленной частоты;

относительно большая выходная мощность (до десятков Ватт);

Недостатки индуктивных датчиков:

точность работы зависит от стабильности питающего напряжения по частоте;

возможна работа только на переменном токе.

Типы индуктивных преобразователей и их конструктивные особенности

По схеме построения индуктивные датчики можно разделить на одинарные и дифференциальные. Одинарный индуктивный датчик содержит одну измерительную ветвь, дифференциальный – две.

В дифференциальном индуктивном датчике при изменении измеряемого параметра одновременно изменяются индуктивности двух одинаковых катушек, причем изменение происходит на одну и ту же величину, но с обратным знаком.

где W– число витков; Ф – пронизывающий ее магнитный поток; I – проходящий по катушке ток.

Ток связан с МДС соотношением:

где Rm = HL / Ф – магнитное сопротивление индуктивного датчика.

Рассмотрим, например, одинарный индуктивный датчик. В основу его работы положено свойство дросселя с воздушным зазором изменять свою индуктивность при изменении величены воздушного зазора.

Индуктивный датчик состоит из ярма 1, обмотки 2, якоря 3- удерживается пружинами. На обмотку 2 через сопротивление нагрузки Rн подается напряжение питания переменного тока. Ток в цепи нагрузки определяется как:

где rд – активное сопротивление дросселя ; L – индуктивность датчика.

Т.к. активное сопротивление цепи величина постоянная, то изменение тока I может происходить только за счет изменения индуктивной составляющей XL=IRн , которая зависит от величены воздушного зазора δ .

Каждому значению δ соответствует определенное значение I, создающего падение напряжения на сопротивлении Rн: Uвых=IRн – представляет собой выходной сигнал датчика. Можно вывести аналитическую зависимость Uвых=f( δ ), при условии что зазор достаточно мал и потоками рассеяния можно пренебречь, и пренебречь магнитным сопротивлением железа Rмж по сравнению с магнитным сопротвлением воздушного зазора Rмв.

Приведем конечное выражение:

В реальных устройствах активное сопротивление цепи намного меньше индуктивного, тогда выражение сводится к виду:

Зависимость Uвых=f(δ) имеет линейный характер (в первом приближении). Реальная характеристика имеет вид:

Отклонение от линейности в начале объясняется принятым допущением Rмж

При малых d магнитное сопротивление железа соизмеримо с магнитным сопротивлением воздуха.

Отклонение при больших d объясняются тем, что при больших d RL становится соизмеримой с величиной активного сопротивления – Rн+rд.

В целом рассмотренный индуктивный датчик имеет ряд существенных недостатков:

не меняется фаза тока при изменении направления перемещения;

при необходимости измерять в обоих направлениях перемещение нужно устанавливать начальный воздушный зазор и, следовательно, ток I0,что неудобно;

ток в нагрузке зависит от амплитуды и частоты питающего напряжения;

в процессе работы датчика на якорь действует сила притяжения к магнитопроводу, которая ничем не уравновешивается, и значит вносит погрешность в работу датчика.

Дифференциальные (реверсивные) индуктивные датчики (ДИД)

Дифференциальные индуктивные датчики представляет собой совокупность двух нереверсивных датчиков и выполняются в виде системы, состоящей из двух магнитопроводов с общим якорем и двумя катушками. Для дифференциальных индуктивных датчиков необходимы два раздельных источника питания, для чего обычно используется разделительный трансформатор 5.

По форме магнитопровода могут быть дифференциально-индуктивные датчики с магнитопроводом Ш-образной формы, набранные из мостов электротехнической стали (при частотах выше 1000Гц применяются железоникелевые сплавы – пермолой), и цилиндрические со сплошным магнитопроводом круглого сечения. Выбор формы датчика зависит от конструктивного сочетания его с контролируемым устройством. Применение Ш-образного магнитопровода обусловлено удобством сборки катушки и уменьшением габаритов датчика.

Для питания дифференциально-индуктивного датчика используют трансформатор 5 с выводом средней точки на вторичной обмотке. Между ним и общим концом обеих катушек включается прибор 4. Воздушный зазор 0,2-0,5 мм.

При среднем положении якоря, когда воздушные зазоры одинаковы, индуктивные сопротивления катушек 3 и 3′ одинаковы следовательно величины токов в катушках равны I1=I2 и результирующий ток в приборе равен 0.

При небольшом отклонении якоря в ту или иную сторону под действием контролируемой величены Х меняются величины зазоров и индуктивностей, прибор регистрирует разностный ток I1-I2, он является функцией смещения якоря от среднего положения. Разность токов обычно регистрируется с помощью магнитоэлектрического прибора 4 (микроамперметра) с выпрямительной схемой В на входе.

Характеристика индуктивного датчика имеет вид:

Полярность выходного тока остается неизменной независимо от знака изменения полного сопротивления катушек. При изменении направления отклонения якоря от среднего положения меняется на противоположную (на 180°) фаза тока на выходе датчика. При использовании фазочувствительных выпрямительных схем можно получить индикацию направления перемещения якоря от среднего положения. Характеристика дифференциального индуктивного датчика с ФЧВ имеет вид:

Погрешность преобразования индуктивного датчика

Информативная способность индуктивного датчика в значительной мере определяется его погрешностью преобразования измеряемого параметра. Суммарная погрешность индуктивного датчика складывается из большого числа составляющих погрешностей.

Можно выделить следующие погрешности индуктивного датчика:

1) Погрешность от нелинейности характеристики. Мультипликативная составляющая общей погрешности. Из-за принципа индуктивного преобразования измеряемой величины, лежащего в основе работы индуктивных датчиков, является существенной и в большинстве случаев определяет диапазон измерения датчика. Обязательно подлежит оценке при разработке датчика.

2) Температурная погрешность. Случайная составляющая. Ввиду большого числа зависимых от температуры параметров составных частей датчика составляющая погрешность может достичь больших величин и является существенной. Подлежит оценке при разработке датчика.

3) Погрешность от влияния внешних электромагнитных полей. Случайная составляющая общей погрешности. Возникает из-за индуцирования ЭДС в обмотке датчика внешними полями и из-за изменения магнитных характеристик магнитопровода под действием внешних полей. В производственных помещениях с силовыми электроустановками обнаруживаются магнитные поля с индукцией Тл и частотой в основном 50 Гц.

Поскольку магнитопроводы индуктивных датчиков работают при индукциях 0,1 – 1 Тл, то доля от внешних полей составит 0,05–0,005% даже в случае отсутствия экранирования. Введение экрана и применение дифференциального датчика снижают эту долю примерно на два порядка. Таким образом, погрешность от влияния внешних полей должна приниматься в рассмотрение только при проектировании датчиков малой чувствительности и с невозможностью достаточной экранировки. В большинстве случаев эта составляющая погрешности не является существенной.

4) Погрешность от магнитоупругого эффекта. Возникает из-за нестабильности деформаций магнитопровода при сборке датчика (аддитивная составляющая) и из-за изменения деформаций в процессе эксплуатации датчика (случайная составляющая). Расчеты с учетом наличия зазоров в магнитопроводе показывают, что влияние нестабильности механических напряжений в магнитопроводе вызывает нестабильность выходного сигнала датчика порядка, и в большинстве случаев эта составляющая может специально не учитываться.

5) Погрешность от тензометрического эффекта обмотки. Случайная составляющая. При намотке катушки датчика в проводе создаются механические напряжения. Изменение этих механических напряжений в процессе эксплуатации датчика ведет к изменению сопротивления катушки постоянному току и, следовательно, к изменению выходного сигнала датчика. Обычно для правильно спроектированных датчиков , т. е. эту составляющую не следует специально учитывать.

6) Погрешность от соединительного кабеля. Возникает из-за нестабильности электрического сопротивления кабеля под действием температуры или деформаций и из-за наводок ЭДС в кабеле под действием внешних полей. Является случайной составляющей погрешности. При нестабильности собственного сопротивления кабеля погрешность выходного сигнала датчика. Длина соединительных кабелей составляет 1–3 м и редко больше. При выполнении кабеля из медного провода сечением сопротивление кабеля менее 0,9 Ом, нестабильность сопротивления . Поскольку полное сопротивление датчика обычно больше 100 Ом, погрешность выходного сигнала датчика может составить величину . Следовательно, для датчиков, имеющих малое сопротивление в рабочем режиме, погрешность следует оценивать. В остальных случаях она не является существенной.

7) Конструктивные погрешности. Возникают под действием следующих причин: влияние измерительного усилия на деформации деталей датчика (аддитивная), влияние перепада измерительного усилия на нестабильность деформаций (мультипликативная), влияние направляющих измерительного стержня на передачу измерительного импульса (мультипликативная), нестабильность передачи измерительного импульса вследствие зазоров и люфтов подвижных частей (случайная). Конструктивные погрешности в первую очередь определяются недостатками в конструкции механических элементов датчика и не являются специфическими для индуктивных датчиков. Оценка этих погрешностей производится по известным способам оценки погрешностей кинематических передач измерительных устройств.

8) Технологические погрешности. Возникают вследствие технологических отклонений взаимного положения деталей датчика (аддитивная), разброса параметров деталей и обмоток при изготовлении (аддитивная), влияния технологических зазоров и натягов в соединении деталей и в направляющих (случайная).

Технологические погрешности изготовления механических элементов конструкции датчика также не являются специфическими для индуктивного датчика, их оценка производится обычными для механических измерительных устройств способами. Погрешности изготовления магнитопровода и катушек датчика ведут к разбросу параметров датчиков и к затруднениям, возникающим при обеспечении взаимозаменяемости последних.

9) Погрешность от старения датчика. Эта составляющая погрешности вызывается, во-первых, износом подвижных элементов конструкции датчика и, во-вторых, изменением во времени электромагнитных характеристик магнитопровода датчика. Погрешность следует рассматривать как случайную. При оценке погрешности от износа во внимание принимается кинематический расчет механизма датчика в каждом конкретном случае. На стадии конструирования датчика в этом случае целесообразно задавать срок службы датчика в нормальных для него условиях эксплуатации, за время которого дополнительная погрешность от износа не превысит заданной величины.

Электромагнитные свойства материалов изменяются во времени.

В большинстве случаев выраженные процессы изменения электромагнитных характеристик заканчиваются в течение первых 200 часов после термообработки и размагничивания магнитопровода. В дальнейшем они остаются практически постоянными и не играют существенной роли в общей погрешности индуктивного датчика.

Проведенное выше рассмотрение составляющих погрешности индуктивного датчика дает возможность оценить их роль в формировании общей погрешности датчика. В большинстве случаев определяющими являются погрешность от нелинейности характеристики и температурная погрешность индуктивного преобразователя.

Ссылка на основную публикацию