Назначение, устройство и принцип действия трансформаторов тока

Что такое трансформатор тока, принцип работы, типы, схемы

В данной статье мы подробно рассмотрим что такое трансформатор тока, опишем принцип его работы, какие бывают типы, а так же расчеты и схемы трансформатора тока.

Описание и принцип работы

Трансформатор тока представляет собой тип «измерительного трансформатора», который предназначен для производства переменного тока в его вторичной обмотки, которое пропорционально току измеряется в его первичном. Трансформаторы тока уменьшают токи высокого напряжения до гораздо более низкого значения и обеспечивают удобный способ безопасного контроля фактического электрического тока, протекающего в линии электропередачи переменного тока, с использованием стандартного амперметра. Принцип работы основного трансформатора тока немного отличается от обычного трансформатора напряжения.

В отличие от трансформатора напряжения или мощности, рассматриваемого ранее, трансформатор тока состоит из одного или нескольких витков в качестве своей первичной обмотки. Эта первичная обмотка может иметь либо один плоский виток, либо катушку из сверхпрочного провода, намотанного на сердечник, либо просто проводник или шину, расположенную через центральное отверстие, как показано на рисунке. Купить трансформатор тока вы можете в популярном интернет магазине Алиэкспресс:

Из-за такого типа расположения трансформатор тока часто называют также «последовательным трансформатором», поскольку первичная обмотка, которая никогда не имеет более нескольких витков, соединена последовательно с проводником с током, питающим нагрузку.

Однако вторичная обмотка может иметь большое количество витков катушки, намотанных на многослойный сердечник из магнитного материала с малыми потерями. Этот сердечник имеет большую площадь поперечного сечения, так что создаваемая плотность магнитного потока является низкой при использовании провода с меньшей площадью поперечного сечения, в зависимости от того, какой ток должен быть понижен, когда он пытается выдать постоянный ток, независимо от подключенной нагрузки.

Вторичная обмотка будет подавать ток либо на короткое замыкание, в виде амперметра, либо на резистивную нагрузку, пока напряжение, наведенное во вторичной обмотке, не станет достаточно большим, чтобы насытить сердечник или вызвать отказ из-за чрезмерного пробоя напряжения.

В отличие от трансформатора напряжения, первичный ток трансформатора тока не зависит от тока вторичной нагрузки, а контролируется внешней нагрузкой. Вторичный ток обычно оценивается в стандартный 1 Ампер или 5 Ампер для больших значений первичного тока.

Существует три основных типа трансформаторов тока: обмоточный, тороидальный и стержневой.

  • Обмоточный трансформатор тока — первичная обмотка трансформатора физически соединена последовательно с проводником, который несет измеренный ток, протекающий в цепи. Величина вторичного тока зависит от коэффициента оборотов трансформатора.
  • Тороидальный трансформатор тока — они не содержат первичной обмотки. Вместо этого линия, по которой проходит ток, протекающий в сети, проходит через окно или отверстие в тороидальном трансформаторе. Некоторые трансформаторы тока имеют «разделенный сердечник», который позволяет открывать, устанавливать и закрывать его, не отключая цепь, к которой они подключены.
  • Трансформатор тока стержневого типа — в этом типе трансформатора тока используется фактический кабель или шина главной цепи в качестве первичной обмотки, что эквивалентно одному витку. Они полностью изолированы от высокого рабочего напряжения системы и обычно крепятся болтами к токонесущему устройству.

Трансформаторы тока могут снизить или «понизить» уровни тока с тысяч ампер до стандартного выходного сигнала с известным отношением либо к 5 А, либо к 1 А для нормальной работы. Таким образом, небольшие и точные приборы и устройства управления могут использоваться с трансформаторами тока, потому что они изолированы от любых высоковольтных линий электропередач. Существует множество применений для измерения и использования для трансформаторов тока, таких как ваттметры, измерители коэффициента мощности, защитные реле или в качестве катушек отключения в магнитных выключателях или MCB.

Конструкция и схема трансформатора тока

Обычно трансформаторы тока и амперметры используются вместе как согласованная пара, в которой конструкция трансформатора тока такова, чтобы обеспечить максимальный вторичный ток, соответствующий полномасштабному отклонению амперметра. В большинстве трансформаторов тока существует приблизительное соотношение обратных витков между двумя токами в первичной и вторичной обмотках. Вот почему калибровка трансформатора тока обычно для определенного типа амперметра.

Большинство трансформаторов тока имеют стандартную вторичную номинальную мощность 5 А, при этом первичные и вторичные токи выражаются в таком соотношении, как 100/5. Это означает, что ток первичной обмотки в 20 раз больше, чем ток вторичной обмотки, поэтому, когда в первичном проводнике протекает 100 ампер, во вторичной обмотке будет протекать 5 ампер. Трансформатор тока, скажем, 500/5, будет производить 5 А во вторичной обмотке при 500 А в первичной обмотке, что в 100 раз больше.

Увеличивая количество вторичных обмоток Ns, ток вторичной обмотки можно сделать намного меньшим, чем ток в измеряемой первичной цепи, потому что, когда Ns увеличивается, Is уменьшается пропорционально. Другими словами, число витков и ток в первичной и вторичной обмотках связаны обратно пропорционально.

Трансформатор тока, как и любой другой трансформатор, должен удовлетворять уравнению ампер-виток, и мы знаем из нашего учебника по трансформаторам напряжения с двойной обмоткой, что это отношение витков равно:

из которого мы получаем:

Коэффициент тока устанавливает коэффициент витков, и, поскольку первичный обычно состоит из одного или двух витков, тогда как вторичный может иметь несколько сотен витков, соотношение между первичным и вторичным может быть довольно большим. Например, предположим, что номинальный ток первичной обмотки составляет 100А. Вторичная обмотка имеет стандартный рейтинг 5А. Тогда соотношение между первичным и вторичным токами составляет 100А-5А или 20: 1. Другими словами, первичный ток в 20 раз больше вторичного тока.

Однако следует отметить, что трансформатор тока с номиналом 100/5 не совпадает с трансформатором с номиналом 20/1 или подразделениями 100/5. Это связано с тем, что отношение 100/5 выражает «номинальный ток на входе / выходе», а не фактическое соотношение первичных и вторичных токов. Также обратите внимание, что число витков и ток в первичной и вторичной обмотках связаны обратно пропорционально.

Но относительно большие изменения в соотношении витков трансформаторов тока могут быть достигнуты путем изменения первичных витков через окно трансформатора ток, где один первичный виток равен одному проходу, а более одного прохода через окно приводит к изменению электрического соотношения.

Так, например, трансформатор тока с отношением, скажем, 300 / 5А можно преобразовать в другой из 150 / 5А или даже 100 / 5А, пропустив основной первичный проводник через его внутреннее окно два или три раза, как показано ниже. Это позволяет более высокому значению трансформатора тока обеспечивать максимальный выходной ток для амперметра, когда используется на меньших первичных линиях тока.

Пример трансформатора тока

Трансформатор тока стержневого типа, который имеет 1 виток на своей первичной обмотке и 160 витков на своей вторичной обмотке, должен использоваться со стандартным диапазоном амперметров с внутренним сопротивлением 0,2 Ом. Амперметр необходим для полного отклонения шкалы, когда первичный ток составляет 800 А. Рассчитайте максимальный вторичный ток и вторичное напряжение на амперметре.

Напряжение через амперметр:

Выше мы видим, что, поскольку вторичная обмотка трансформатора тока подключена к амперметру с очень малым сопротивлением, падение напряжения на вторичной обмотке составляет всего 1,0 В при полном первичном токе.

Однако, если амперметр был удален, вторичная обмотка фактически разомкнута, и, таким образом, трансформатор действует как повышающий трансформатор. Это частично связано с очень большим увеличением намагничивающего потока во вторичном сердечнике, поскольку реактивное сопротивление вторичной утечки влияет на вторичное индуцированное напряжение, потому что во вторичной обмотке нет противоположного тока, чтобы предотвратить это.

Результатом является очень высокое напряжение, наведенное во вторичной обмотке, равное отношению: Vp (Ns / Np), развиваемое через вторичную обмотку. Например, предположим, что наш трансформатор тока сверху используется на трехфазной линии электропередачи напряжением 480 вольт. Следовательно:

Это высокое напряжение связано с тем, что отношение вольт на витки в первичной и вторичной обмотках практически постоянно, а поскольку Vs = Ns * Vp, значения Ns и Vp являются высокими значениями, поэтому Vs чрезвычайно велико.

По этой причине трансформатор тока никогда не следует оставлять разомкнутым или работать без нагрузки, когда через него протекает основной первичный ток, точно так же, как трансформатор напряжения никогда не должен работать при коротком замыкании. Если амперметр (или нагрузка) должен быть удален, сначала следует установить короткое замыкание на вторичных клеммах, чтобы исключить риск удара током.

Это высокое напряжение объясняется тем, что когда вторичная обмотка разомкнута, железный сердечник трансформатора работает с высокой степенью насыщения и ничто не может его остановить, он создает аномально большое вторичное напряжение, и в нашем простом примере выше это было рассчитано на 76,8 кВ ! Это высокое вторичное напряжение может повредить изоляцию или привести к поражению электрическим током при случайном прикосновении к клеммам трансформатора тока.

Ручные трансформаторы тока

В настоящее время доступно много специализированных типов трансформаторов тока. Популярный и портативный тип, который может быть использован для измерения нагрузки цепи, называется «клещами», как показано на рисунке.

Измерители зажимов открывают и закрывают вокруг проводника с током и измеряют его ток, определяя магнитное поле вокруг него, обеспечивая быстрое считывание результатов измерений, как правило, на цифровом дисплее без отключения или размыкания цепи.

Наряду с ручным зажимом типа трансформатора тока имеются трансформаторы тока с разделенным сердечником, у которых один конец съемный, поэтому нет необходимости отсоединять проводник нагрузки или шину для его установки. Они доступны для измерения токов от 100 до 5000 ампер, с квадратными размерами окна от 1 ″ до более 12 ″ (от 25 до 300 мм).

Подводя итог, можно сказать, что трансформатор тока (ТТ) представляет собой тип измерительного трансформатора, используемого для преобразования первичного тока во вторичный ток через магнитную среду. Его вторичная обмотка обеспечивает значительно уменьшенный ток, который можно использовать для обнаружения условий сверхтока, пониженного тока, пикового или среднего тока.

Первичная катушка трансформатора тока всегда соединена последовательно с главным проводником, в результате чего ее также называют последовательным трансформатором. Номинальный вторичный ток рассчитан на 1А или 5А для простоты измерения. Конструкция может представлять собой один первичный виток, как в типах тороидальных, кольцевых или стержневых, или несколько витков первичной обмотки, как правило, для малых коэффициентов тока.

Трансформаторы тока предназначены для использования в качестве устройств пропорционального тока. Поэтому вторичная обмотка трансформаторов тока никогда не должна эксплуатироваться в разомкнутой цепи, точно так же, как трансформатор напряжения никогда не должен работать при коротком замыкании.

Очень высокое напряжение возникает в результате разомкнутой цепи вторичной цепи трансформатора тока под напряжением, поэтому их клеммы должны быть замкнуты накоротко, если амперметр должен быть удален или когда ТТ не используется перед включением питания системы.

В следующей статье о трансформаторах мы рассмотрим, что происходит, когда мы соединяем вместе три отдельных трансформатора в конфигурации «звезда» или «треугольник», чтобы получить более мощный силовой трансформатор, называемый трехфазным трансформатором, который используется для питания трехфазных источников питания.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Читайте также:  Как провести электропроводку в каркасном доме своими руками

Устройство и принцип работы трансформатора тока

Трансформатор тока (ТТ) — статическое электромагнитное устройство, где первичная обмотка подсоединена к источнику питания, а вторая — к измерительным или защитным аппаратам, обладающим малым сопротивлением. Преобразователи широко применяются для измерения величины тока и в агрегатах релейной защиты энергетических систем. Они обеспечивают полную безопасность проведения измерений в высоковольтных линиях.

Особенности конструкции

При работе трансформатора тока вторичная обмотка всегда находится под нагрузкой, сопротивление которой регулируется требованиями к точности коэффициента трансформации. Допускается незначительное отклонение сопротивления от указанного в паспорте устройства.

Если произойдет увеличение нагрузки, то во второй обмотке резко возрастет напряжение, что может привести к пробою изоляции и поломке устройства. Такая ситуация создает угрозу безопасности сотрудникам, которые обслуживают электрический прибор. В устройство трансформатора тока входят:

  • основание;
  • магнитопровод (сердечник);
  • первичная обмотка;
  • вторичная обмотка;
  • клеммник для подсоединения кабеля от источника питания;
  • заземляющий контакт.

Первичная обмотка изготавливается в виде катушки, закрепленной на магнитопроводе, или как шина. Согласно конструктивного исполнения в некоторых устройствах нет встроенной первичной катушки, а дополняется она обслуживающим персоналом путем соединения отдельного провода через специальное окно.

Корпус устройства выполняет роль изоляции и предохранения обмоток от внешних повреждений. В последних моделях устройств сердечники изготавливаются из нанокристаллических сплавов, которые значительно увеличивают класс точности прибора.

Из-за больших потерь в сердечнике устройство начинает сильно нагреваться, что приводит к износу или выходу из строя его изоляции. Вторая обмотка в разомкнутом состоянии также создает негативное явление, так как происходит перегрев и выгорание магнитного провода.

Основной характеристикой прибора считается коэффициент трансформации, который обозначает отношение номинального тока в первичной обмотке к такому же значению во вторичной. Реальное значение этого коэффициента несколько отличается от номинального, что объясняется степенью погрешности прибора.

Связано это с тем, что в магнитных конструкциях имеются потери, связанные с намагничиванием и нагревом магнитопровода. Чтобы несколько сгладить эти погрешности производители используют витковую коррекцию.

Назначение устройства

По своему назначению трансформаторы тока относятся к специальным вспомогательным устройствам, применяемых в комплексе с различной измерительной аппаратурой и защитными механизмами в сетях переменного тока.

Принципом работы трансформатора тока считается преобразование любых величин, которые приобретают более воспринимаемые значения для получения информации и обеспечения питания защитных реле. Благодаря изоляции аппаратов, сотрудники обслуживающей организации надежно защищены от поражения током. Все виды трансформаторов могут служить для двух функций:

  1. Измерение силы тока в цепи — с их помощью передаются данные на измерительные приборы, которые подключены ко вторичной обмотке. В этом случае трансформатор может преобразовать ток высокой величины в более приемлемые параметры.
  2. Предохранительные действия — устройства в первую очередь передают данные на защитные аппараты и приборы управления. С помощью трансформаторов электрические показатели преобразуются для питания релейного оборудования.

По своему назначению и принципу действия трансформаторы тока способствуют подсоединению измерительных приборов к энергетическим линиям высокого напряжения, когда нет возможности подключить их напрямую. Они нужны для передачи снятых показаний на аппаратуру измерения, которая подключается ко вторичной обмотке.

Кроме того, преобразователи проводят наблюдение за состоянием электрического тока в цепи, к которому они подключены. При подсоединении к силовой автоматической защите устройство проводит мониторинг сетей, наличие и состояние заземления. Если ток достигает максимального значения, то автоматически включается защита и останавливается работа всего оборудования.

Принцип действия

Работает трансформатор тока на основе закона электромагнитной индукции. Из внешнего источника питания поступает напряжение на клеммы устройства, которые непосредственно связаны с первичной обмоткой, обладающей конкретным количеством витков. В результате образуется магнитный поток вокруг катушки, который улавливает сердечник.

Благодаря этому, потери показаний в процессе преобразования будут незначительными. Когда ток пересекает вторичную обмотку, то магнитный поток активирует электродвижущую силу, под влиянием которой происходит преодоление сопротивления катушки и нагрузки на выходе.

Параллельно с этим процессом происходит снижение напряжения со вторичной обмотки. Если происходит короткое замыкание во вторичной обмотке или подключение к ней нагрузки, то под воздействием электродвижущей силы в ней возможно определение вторичного тока.

Классификация приборов

Все разновидности агрегатов классифицируются в зависимости от конструкции и того, какими техническими показателями обладают. Кроме измерительных и защитных трансформаторов, бывают промежуточные виды этих преобразователей. В этом случае прибор подключается для проведения измерения в цепь релейной защиты.

Выделяются лабораторные виды преобразователей, которые обладают повышенной точностью измерения и множеством коэффициентов трансформации. Токовые трансформаторы подразделяются:

  1. По способу установки — преобразователь предназначен для наружного и внутреннего монтажа. Компактные модели могут быть переносными или встраиваются в машины и электрические аппараты. Наружный и внутренний монтаж подразумевает проходной или опорный способ установки.
  2. В зависимости от типа первичной обмотки — оборудование подразделяется на одновитковые, стержневые, многовитковые, катушечные и шинные устройства.
  3. При изолировании трансформаторов применяются: бакелит, фарфор и другие материалы. Некоторые марки устройств для изоляции заливаются компаундом.

От того как устроен преобразователь, он может иметь одну или две ступени. Эксплуатационное напряжение устройств находится в диапазоне до 1 тыс. В и выше. Все необходимые технические данные имеют буквенные, цифровые обозначения и присутствуют на соответствующих бирках.

Популярные модели

Любая выпускаемая марка прибора обладает отдельными параметрами и техническими характеристиками. Отечественные производители выпускают большое количество этих устройств. К ним относятся:

  1. ТОЛ-НТЗ-10−01 — выпускается Невским трансформаторным заводом «Волхов» и используется для передачи показаний к измерительной аппаратуре. Кроме того, его применяют в электрических цепях с устройствами защиты и управления. Преобразователь выпускается в виде опорной конструкции второй категории размещения. Прибор применяется в сетях с напряжением до 10 кВ и обладает сроком службы до 30 лет.
  2. ТОП-0,66 — применяются в энергетических сетях переменного тока с напряжением до 0,66 кВ. Корпус устройства изготовлен из негорючего материала. Эксплуатация агрегата возможна в диапазоне температур от -45 до +50 °C и в любом положении. Первичная шина трансформатора состоит из меди, покрытой оловом.
  3. ВВ, ВВО — проходные шинные трансформаторы тока, изготовленные в компаундном корпусе. Используют приборы в сетях переменного тока напряжением до 24 кВ. Обладают механическим изменением коэффициента трансформации на обеих обмотках.

Трехфазные устройства подключаются в сеть «треугольником» или «звездой». В первом случае удается получить большое значение тока во вторичной обмотке, а во втором — возможно отследить значение тока в каждой фазе.


Устройство и принцип работы трансформатора тока

Трансформатор тока представляет собой измерительное устройство, первичная обмотка (высокая сторона) которого подключается к источнику переменного электрического тока, а его вторичная обмотка (низкая сторона) подключается к приборам измерения или к приборам защиты с малым сопротивлением.

Если точнее, то первичная обмотка любого трансформатора тока включается только последовательно в силовую электрическую цепь, по которой протекает электрическая нагрузка. К вторичной обмотке или нескольким вторичным обмоткам подключаются защитные приборы, измерительные приборы и приборы учёта электроэнергии.

Принцип действия трансформатора тока

Работа обычного трансформатора тока базируется на физическом явлении электромагнитной индукции. Это значит, что при подаче напряжения на первичную обмотку, в её витках будет проходить переменный ток, образующий впоследствии появление переменного магнитного потока. Появившийся магнитный поток проходит по сердечнику и пронизывает витки всех обмоток трансформатора, таким образом, индуцируя в них электродвижущие силы (э.д.с.). В случае закорачивания вторичной обмотки или же при включении нагрузки в её цепь, под воздействием э.д.с. в витках обмотки начнёт протекать вторичный ток.

Назначение трансформаторов

Общее назначение трансформаторов тока – преобразование (снижение) большой величины переменного тока до таких значений, которые будут удобны и безопасны для измерения.

Трансформаторы тока позволяют безопасно измерять большие электрические нагрузки в сетях переменного тока. Это становится возможным благодаря изолированию первичной обмотки и вторичной обмотки друг от друга.

При изготовлении к трансформаторам тока предъявляются строгие требования по качеству изоляции и по точности измерений электрических нагрузок.

Конструкция трансформатора тока

Трансформатор тока – это устройство, основой которого является сердечник, шихтованный из особой трансформаторной стали. На сердечник (магнитопровод) наматываются витки одной, двух или даже нескольких вторичных обмоток, электрически изолированных друг от друга, а также и от сердечника.

Что касается первичной обмотки, то она может представлять собой катушку, также намотанную на сердечник измерительного трансформатора. Однако чаще всего первичная обмотка представляет собой алюминиевую или медную шину (пластину). Не менее часто в трансформаторе тока вообще отсутствует первичная обмотка как таковая. В этом случае функцию первичной обмотки выполняет силовой проводник, проходящий через кольцо трансформатора тока. Это может быть отдельная жила электрического кабеля.

Вся конструкция трансформатора тока помещается в корпус для защиты от механических повреждений.

Коэффициент трансформации

Основной технической характеристикой каждого трансформатора тока является номинальный коэффициент трансформации. Его значение указывается на специальной табличке (шильдике) в виде отношения номинального значения первичного тока к номинальному значению вторичного тока.

Например, указанное значение 400/5 означает, что при первичной нагрузке в 400А, во вторичной цепи должен протекать ток в 5А и, следовательно, коэффициент трансформации будет равен 80. Если на шильдике указано значение 50/1, то коэффициент трансформации будет равен 50.

Практически у каждого трансформатора тока есть определённая погрешность. В зависимости от её величины каждому трансформатору тока присваивается свой класс точности.

Классификация трансформаторов

Существует несколько признаков, по которым трансформаторы тока делятся.

По своему назначению они бывают измерительными, защитными, а также промежуточными и лабораторными.

  • Измерительные выполняют функцию измерения. К ним подключаются приборы, такие как амперметр или приборы учёта (счётчики электрической энергии).
  • Защитные трансформаторы тока выполняют функцию электрической защиты совместно с устройствами защиты, поэтому к ним подключаются устройства, такие как реле тока или современные цифровые устройства высоковольтной защиты.
  • Промежуточные трансформаторы тока применяют в токовых цепях релейной защиты.
  • Лабораторные устройства обладают очень высокой степенью точности измерений. Также у них может быть несколько разных коэффициентов трансформации.

По виду установки трансформаторы тока бывают наружными и внутренними, а также встроенными внутрь электрооборудования (внутри высоковольтных выключателей, внутри питающих силовых трансформаторов и т.д.). Кроме того трансформаторы тока бывают накладными и переносными. Переносные трансформаторы используют для измерений токовой нагрузки в лабораторных условиях.

По исполнению первичной обмотки бывают одновитковые, многовитковые и шинные трансформаторы тока. По количеству ступеней трансформации – одно- и двухступенчатые.

По напряжению трансформаторы тока делятся на две группы – устройства с напряжением до 1000В и устройства с напряжением выше 1000В.

Кроме обычных измерительных трансформаторов тока, существуют и специальные, такие как трансформаторы тока нулевой последовательности.

Назначение и принцип действия измерительных трансформаторов тока

Измерительный трансформатор тока — это устройство, предназначенное для контроля и измерения напряжения, тока, фазы электрического сигнала в контролируемой цепи. Он применяется только в тех случаях, когда нет возможности использовать стандартные приборы для определения величины различных показателей. Этот полезный прибор можно купить по сравнительно небольшой цене или изготовить своими руками.

Читайте также:  Как подключить сенсорный выключатель к светодиодной ленте

Общие сведения

Перед тем как определить, для чего нужен трансформатор тока, необходимо подробно изучить его устройство, назначение, разновидности и основные преимущества. Вся эта информация поможет выбрать максимально эффективную модель для каждой конкретной установки.

Назначение и устройство

Измерительный трансформатор используется не так часто, как другие виды этого прибора. Это обусловлено его узкой направленностью, которая позволяет максимально качественно выполнять возложенную на него функцию.

Назначение трансформатора тока может быть разнообразным. Наиболее часто используют устройства такого типа в следующих целях:

  1. Уменьшение величины первичного тока до требуемых значений. Благодаря этому появляется возможность внедрения электронных счётчиков, амперметров и прочих унифицированных измерительных устройств.
  2. Обеспечение гальванической развязки между большим и маленьким напряжением. Это позволяет обезопасить обслуживающий персонал от удара электрическим током и прочих неприятностей.

Устройство токового трансформатора отличается своей простотой и доступностью. В нём может легко разобраться не только высококвалифицированный электрик, но и новичок. Прибор включает в себя следующие составные части:

  1. Замкнутый сердечник. Он представляет собой объединённый набор пластин, изготовленных из листовой электротехнической стали.
  2. Первичная обмотка, имеющая стандартное количество витков.
  3. Одна или две вторичные обмотки.

Основные параметры

Технические характеристики всех измерительных трансформаторов тока описываются несколькими основными параметрами. Они обязательно указываются в паспорте устройства или другой прилагаемой документации. Специалисты рекомендуют по этим показателям выбирать модель прибора, которую мастер может установить на ту или иную конструкцию. Главные параметры:

  1. Номинальное напряжение. Величина этого показателя для каждой конкретной модели трансформатора указывается в техническом паспорте. В зависимости от разновидности прибора она может составлять от 0,66 до 1150 кВ.
  2. Номинальный ток первичной обмотки. Этот важный параметр можно найти в технической документации и литературе. Некоторые производители указывают его в паспорте. Величина тока зависит от исполнения прибора и варьируется от 1 до 40 тыс. ампер.
  3. Номинальный ток во вторичной обмотке. В отличие от предыдущего показателя, этот имеет стандартные значения (1 или 5 ампер). Трансформаторы, которые изготавливаются по индивидуальному заказу, могут иметь параметр, который будет равен 2 или 2,5 А.
  4. Коэффициент трансформации. Он представляет собой значение, показывающее соотношение показателей тока в первичной и вторичной обмотках. Профессионалы различают 2 разновидности этого коэффициента (действительный и номинальный) и используют их в различных расчётах.

Преимущества и недостатки

Для того чтобы лучше понять принцип действия и назначение трансформаторов тока, необходимо рассмотреть все достоинства и недостатки этого устройства. Положительных сторон намного больше, поэтому приборы пользуются популярностью у потребителей.

Преимущества измерительных трансформаторов:

  • минимальные затраты материала на изготовление сердечника и обмоток;
  • небольшие размеры;
  • малый вес;
  • длительный срок службы устройства;
  • устойчивость к намагничиванию постоянным током;
  • высокий технологический запас по классу точности;
  • дешевизна прибора.

Несмотря на большое количество достоинств, у измерительных трансформаторов есть и несколько недостатков. Их обязательно нужно брать во внимание перед покупкой устройства и началом его использования. В противном случае можно столкнуться с различными трудностями, которые осложнят работу прибора и увеличат вероятность возникновения поломок.

Среди наиболее значимых недостатков выделяются такие:

  • низкая чувствительность при малом токе;
  • зависимость точности показаний от внешних магнитных полей;
  • большая чувствительность к колебаниям тока;
  • высокое потребление электроэнергии самим устройством.

Разновидности конструкций

Измерительные токовые трансформаторы выпускаются различных типов. Все они имеют одно и то же назначение, но отличаются составными элементами и принципом действия. Каждая разновидность применяется для достижения определённых целей, что позволяет выбирать оптимальный вариант для каждого случая.

Катушечного типа

Этот вид измерительных трансформаторов считается наиболее простым по конструкции. Свою популярность он приобрёл ещё в советские времена, когда не было более качественных и эффективных устройств. Состоит катушечный прибор из следующих элементов:

  • защитный корпус;
  • вторичная и первичная обмотка;
  • клеммная колодка;
  • контакты;
  • восьмёрочная или петлевая обмотка.

Такие трансформаторы имеют небольшие размеры и приемлемую цену, которая обусловлена возможностью механизации обмоточных работ. Несмотря на это, приборы имеют несколько значимых недостатков, которые снижают их популярность среди потребителей.

К ним относят:

  • низкое разрядное напряжение, которое становится следствием слабой катушечной изоляции;
  • возможность использования только при небольших номинальных напряжениях (не более 3 кВ);
  • способность работать только при пониженных требованиях к электрической прочности.

Проходной трансформатор

Эти устройства считаются наиболее часто используемыми. Они нашли широкое применение в различных распределительных приборах, рассчитанных на напряжение от 6 до 35 кВ. Их устройство не отличается особой сложностью.

Конструкция состоит из таких частей:

  • литой эпоксидный корпус;
  • магнитопровод;
  • первичная обмотка;
  • вторичная обмотка.

Трансформаторы этого типа ценятся за то, что дают возможность в закрытых распределительных устройствах сэкономить проходной изолятор. Среди других преимуществ прибора выделяют такие:

  • малые габариты;
  • высокая электродинамическая стойкость.

Стержневое устройство

Стержневые трансформаторы часто называют одновитковыми. Главная их особенность — увеличение точности при повышении силы тока и уменьшение — при понижении. Она обусловлена тем, что первичная обмотка только один раз проходит через отверстие сердечника, что приводит к численному равенству количества ампер-витков и номинального тока.

Устройство состоит из следующих деталей:

  • железный магнитопровод (сердечник);
  • стержень проходного изолятора;
  • вторичная и первичная обмотка.

В стержневых трансформаторах токах сердечники могут иметь круглую или прямоугольную форму. От этого будет зависеть длина магнитного пути, которая должна иметь определённое значение для каждого конкретного случая. В большинстве ситуаций специалисты рекомендуют использовать круглые сердечники, которые снизят магнитные потери и увеличат эффективность устройства.

Шинный прибор

Шинные трансформаторы представляют собой изделия, в конструкцию которых входят сердечники со вторичной обмоткой, а первичная — отсутствует. В главной изоляции прибора предусмотрено специальное отверстие, через которое пропускается шина распределительного устройства, выполняющая роль первичной обмотки.

Эта разновидность трансформатора очень похожа на стержневую. Лишь при малых показаниях напряжения через отверстие в сердечнике прокладывают несколько витков проводника, что даёт возможность получить многовитковую конструкцию прибора.

Основными преимуществами шинного трансформатора считаются:

  • простота конструкции;
  • лёгкость проведения монтажных, ремонтных и профилактических работ;
  • возможность использовать устройство не только при малых номинальных токах, но и при высоких (более 2 тыс. ампер);
  • высокая электродинамическая стойкость, обусловленная устойчивостью шинной конструкции.

Схемы подключения

Для того чтобы устройство эффективно работало и качественно выполняло возложенные на него функции, нужно правильно его подключить. Для этого следует руководствоваться одной из стандартных схем, позволяющих удовлетворить требования владельцев оборудования. Только в этом случае можно добиться желаемого результата и выполнить работу за максимально короткий промежуток времени.

Основные схемы соединения трансформаторов и обмоток реле:

  1. Звезда. Этот вариант подключения предусматривает установку трансформаторов тока во всех фазах. Их вторичные обмотки соединяются с соответствующими элементами реле в виде звезды, а нулевые точки — с общим проводом. Такая схема используется только в защитных устройствах, предотвращающих короткие замыкания.
  2. Неполная звезда. Единственное отличие этого способа подключения от звезды — установка трансформаторов только в двух фазах.
  3. Треугольник. Вторичные обмотки всех трансформаторов последовательно соединяются друг с другом при помощи разноимённых выводов. К вершинам образованного треугольника подключаются реле, соединённые в звезду. Этот вариант применяется для дистанционных и дифференциальных защит.
  4. Неполный треугольник. Отличительная черта этой схемы подключения — использование вторичных обмоток, установленных не во всех фазах, а только в двух. Такой вариант применяется для защиты двигателей от междуфазных коротких замыканий.

Правила обслуживания

В большинстве случаев срок службы измерительного токового трансформатора составляет около 20 лет. Чтобы продлить этот срок на 10 и более лет, необходимо правильно обслуживать устройство и в нужное время проводить профилактические мероприятия.

Основные требования, которые нужно соблюдать для увеличения срока службы трансформатора:

  1. Необходимо регулярно проводить визуальный осмотр на предмет наличия различных неисправностей. Чаще всего это помогает выявить большинство поломок на начальной стадии и быстро устранить их.
  2. Контролировать нагрузку в первичных цепях и стараться не допускать превышения максимальных значений.
  3. Если в первичной цепи имеются какие-либо контакты, то рекомендуется тщательно осматривать их на предмет наличия дефектов или видимых повреждений.
  4. Большинство поломок и коротких замыканий возникает в результате проблем с внешним изоляционным слоем. Он нарушается из-за неправильного использования устройства, скопления грязи и влаги, а также воздействия высоких или низких температур.
  5. Все профилактические проверки и ремонт следует проводить в соответствии с действующими нормативами.
  6. При обнаружении какой-либо крупной поломки или мелкой неисправности необходимо сразу же отключить электропитание и выполнить замену прибора.
  7. Повреждённый трансформатор тока могут ремонтировать только специальные службы, где работают высококвалифицированные специалисты с большим опытом работы. Самостоятельный ремонт может стать причиной дополнительных поломок, которые невозможно будет исправить.

Измерительный токовый трансформатор — это полезное устройство, позволяющее измерять и регулировать различные параметры системы. При правильном выборе прибора, его установке и соблюдении всех рекомендаций профессионалов можно продлить срок службы аппарата, а также снизить вероятность появления каких-либо проблем.

Измерительный трансформатор тока

Трансформатором тока(ТН, TV) – называют электротехническое устройство, изменяющее величину выходного значения электротока в процессе передачи с первичной на вторичную обмотку. В результате пропуска через трансформатор, электрический ток передаётся из одной системы в другую, пропорционально изменяясь, в зависимости от поставленной задачи.

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

Особенности конструкции и принцип работы

Принцип работы трансформаторов тока основан на использовании закона электромагнитной индукции.

Прибор состоит из следующих элементов:

  • первичной и вторичной обмоток;
  • замкнутого сердечника (магнитопровода).

Принцип работы трансформатора

Обмотки накручены вокруг сердечника, изолированно от него и друг от друга. Иногда первичная обмотка может заменяться медной или алюминиевой шиной. Трансформация величины электрического тока происходит за счёт разницы количества витков первичной и вторичной обмоток. В большинстве случаев устройство предназначено для снижения показателя тока, поэтому вторичная обмотка выполняется с меньшим количеством витков, нежели первичная.

Электроток подаётся на первичную обмотку при последовательном подключении. В результате на катушке формируется магнитный поток и наводится электродвижущая сила, вызывающая возникновение тока на выходной катушке.

К выходной обмотке подключают потребляющий прибор, в зависимости от целей, для которых используется устройство.

Некоторые устройства выполняются с несколькими выходными катушками, что позволяет путём переключения изменять величину трансформации электрического тока. В целях безопасности, для обеспечения защиты при пробое изоляции, выходной контур заземляется.

Виды трансформаторов тока

Данные электротехнические устройства классифицируются по нескольким характеристикам. В зависимости от назначения токовые трансформаторы могут быть:

  • защитными – снижающими параметры тока для предотвращения выхода из строя потребляющих устройств;
  • измерительными – через которые подключаются средства измерения, в том числе электросчётчики;
  • промежуточными – устанавливаемыми в системы релейной защиты;
  • лабораторными – используемыми для исследовательских целей, обладающими низкой погрешностью измерения, нередко – с несколькими коэффициентами трансформации.

Учитывая характер условий эксплуатации, различают трансформаторы:

    для наружной установки – защищённые от воздействия атмосферных факторов, которые можно использовать на открытом воздухе;

Три трансформатора тока для 3-х фаз(А, B? C)
внутренние – применяемые внутри помещений;

Читайте также:  Умные розетки с дистанционным управлением: назначение и принцип работы

ТТ для установки внутри помещений
встроенные – расположенные внутри электрических приборов и являющиеся их составной частью(3 ТА для каждой фазы показаны стрелкой).

Встроенные ТТ

В зависимости от исполнения первичных обмоток различают устройства:

  • одновиткового исполнения;
  • многовитковые;
  • шинные.

С учётом способа установки их подразделяют на следующие типы:

По числу ступеней изменения тока выделяют трансформаторы:

  • одноступенчатого,
  • двухступенчатого (каскадного) типа.

Устройства, в зависимости от величины напряжения, на которое они рассчитаны делят на предназначенные для работы в условиях более и менее 1000 В.

Для изготовления сердечника применяется специальная трансформаторная сталь. Изоляция выполняется сухой (бакелитовой, фарфоровой), обычной или бумажно-масляной.

Расшифровка маркировки

Технические параметры

Трансформаторы тока характеризуются следующими индивидуальными параметрами:

  1. Номинальным током – позволяющим аппарату функционировать длительное время, не перегреваясь;
  2. Номинальным напряжением – значение должно обеспечивать нормальную работу трансформатора. Именно этот показатель влияет на качество изоляции между обмотками, одна из которых находится под высоким напряжением, а другая заземлена.
  3. Коэффициентом трансформации; Формула по вычислению коэффициента трансформации

  • U1 и U2 – напряжение в первичной и вторичной обмотки,
  • N1 и N2 – количество витков в первичной и вторичной обмотке,
  • I1 и I2 – ток в первичной и вторичной обмотки(обычно ток во вторичной обмотке равен 1А или 5А).
  • Погрешностью значения электротока – вызывается намагничиванием;
  • Номинальной нагрузкой, определяющей нормальную работу прибора;
  • Номинальной предельной кратностью – максимально допустимое значение отношения первичного значения электротока к номинальному;
  • Предельной кратностью вторичного тока – соотношение наибольшего тока вторичной обмотки к его номинальной величине.
  • Значения которыми могут обладать ТТ

    При выборе устройства необходимо учитывать значение указанных и других характеристик.

    Схемы подключения трансформаторов тока

    Силового оборудования

    Схема подключения для 110 кВ и выше:

    Схема подключения для 6-10 кВ в ячейках КРУ:

    Вторичные цепи

    Схема включение трансформатора тока в полную звезду:

    Схема включение трансформатора тока в неполную звезду(З а счет распределения токов на дополнительном приборе получается отобразить векторную сумму фаз А и С, которая противоположно направлена вектору фазы В при симметричном режиме нагрузки сети):

    Схема включение трансформатора тока в неполную звезду(для контроля линейного тока с помощью реле):

    Схема включение трансформатора тока в полную звезду с подключением обмотки реле к фильтру нулевой последовательности(ФТНП):

    Популярные виды и стоимость трансформаторов

    Бытового потребителя больше интересуют токовые трансформаторы, используемые для подключения электросчётчиков. В продаже предлагаются приборы типов:

    Цена зависит от разновидности, конструкции, характеристик и напряжений на котором будет использоваться ТН:

    • 0,66 кВ от 300 – 5000,
    • 6-10 кВ 10000 – 45000,
    • 35 кВ – около 50 000р,
    • 110 кВ и выше – нужно уточнять у производителя.

    Возможные неисправности

    Указанные устройства чаще всего выходят из строя в результате повреждения изоляции, вызванного перегревом, непредусмотренным механическим воздействием или ошибкой при сборке.

    Чтобы проверить состояние прибора, измеряют сопротивление межвитковой изоляции. Если она меньше установленного значения, оборудование нуждается в замене или ремонте.

    Также для диагностики используются специальные приборы – тепловизоры, позволяющие проверить состояние всей действующей схемы. Наиболее сложные диагностические процедуры производятся в лабораторных условиях. Своевременная диагностика позволяет исключить аварийные ситуации и обеспечить нормальную работу устройств.

    Трансформаторы тока назначение и принцип действия

    В электротехнике довольно часто возникает необходимость измерения величин с большими значениями. Для решения этой задачи применяются трансформаторы тока, назначение и принцип действия которых делает возможным проведение любых измерений. С этой целью выполняется последовательное включение первичной обмотки устройства в цепь с переменным током, значение которого необходимо измерить. Вторичная обмотка подключается к измерительным приборам. Между токами в первичной и вторичной обмотке существует определенная пропорция. Все трансформаторы этого типа отличаются высокой точностью. В их конструкцию входит две и более вторичных обмоток, к которым подключаются защитные устройства, измерительные средства и приборы учета.

    Что такое трансформатор тока?

    К трансформаторам тока относятся устройства, в которых вторичный ток, применяемый для измерений, находится в пропорциональном соотношении с первичным током, поступающим из электрической сети.

    Включение в цепь первичной обмотки осуществляется последовательно с токопроводом. Подключение вторичной обмотки выполняется на какую-либо нагрузку в виде измерительных приборов и различных реле. Между токами обеих обмоток возникает пропорциональная зависимость, соответствующая количеству витков. В трансформаторных устройствах высокого напряжения выполняется изоляция между обмотками из расчета на полное рабочее напряжение. Как правило производится заземление одного из концов вторичной обмотки, поэтому потенциалы обмотки и земли будут примерно одинаковыми.

    Все трансформаторы тока предназначены для выполнения двух основных функций: измерения и защиты. В некоторых устройствах обе функции могут совмещаться.

    • Измерительные трансформаторы передают полученную информацию к подключенным измерительным приборам. Они устанавливаются в цепях с высоким напряжением, в которые невозможно включить напрямую приборы для измерений. Поэтому только во вторичную обмотку трансформатора выполняется подключение амперметров, счетчиков, токовых обмоток ваттметров и прочих приборов учета. В результате, трансформатор преобразует переменный ток даже очень высокого значения, в переменный ток с показателями, наиболее приемлемыми для использования обычных измерительных приборов. Одновременно обеспечивается изоляция измерительных приборов от цепей с высоким напряжением, повышается электробезопасность обслуживающего персонала.
    • Защитные трансформаторные устройства в первую очередь передают полученную измерительную информацию на устройства управления и защиты. С помощью защитных трансформаторов, переменный ток любого значения преобразуется в переменный ток с наиболее подходящим значением, обеспечивающим питание устройств релейной защиты. Одновременно выполняется изоляция реле, к которых имеется доступ персонала, от цепей высокого напряжения.

    Назначение трансформаторов

    Трансформаторы тока относятся к категории специальных вспомогательных приборов, используемых совместно с различными измерительными устройствами и реле в цепях переменного тока. Главной функцией таких трансформаторов является преобразование любого значения тока до величин, наиболее удобных для проведения измерений, обеспечения питания отключающих устройств и обмоток реле. За счет изоляции приборов, обслуживающий персонал оказывается надежно защищен от поражения током высокого напряжения.

    Измерительные трансформаторы тока предназначены для электрических цепей с высоким напряжением, когда отсутствует возможность прямого подключения измерительных приборов. Их основное назначение заключается в передаче полученных данных об электрическом токе на измерительные устройства, подключаемые к вторичной обмотке.

    Немаловажной функцией трансформаторов является контроль над состоянием электрического тока в цепи, к которой они подключены. Во время подключения к силовому реле, выполняются постоянные проверки сетей, наличие и состояние заземления. Когда ток достигает аварийного значения, включается защита, отключающая все используемое оборудование.

    Принцип работы

    Принцип работы трансформаторов тока основан на законе электромагнитной индукции. Напряжение из внешней сети поступает на силовую первичную обмотку с определенным количеством витков и преодолевает ее полное сопротивление. Это приводит к появлению вокруг катушки магнитного потока, улавливаемого магнитопроводом. Данный магнитный поток располагается перпендикулярно по отношению к направлению тока. За счет этого потери электрического тока в процессе преобразования будут минимальными.

    При пересечении витков вторичной обмотки, расположенных перпендикулярно, происходит активация магнитным потоком электродвижущей силы. Под влиянием ЭДС появляется ток, который вынужден преодолевать полное сопротивление катушки и выходной нагрузки. Одновременно на выходе вторичной обмотки наблюдается падение напряжения.

    Классификация трансформаторов тока

    Все трансформаторы тока можно классифицировать, в зависимости от их особенностей и технических характеристик:

    1. По назначению. Устройства могут быть измерительными, защитными или промежуточными. Последний вариант используется при включении измерительных приборов в токовые цепи релейной защиты и других аналогичных схемах. Кроме того, существуют лабораторные трансформаторы тока, отличающиеся высокой точностью и множеством коэффициентов трансформации.
    2. По типу установки. Существуют трансформаторные устройства для наружной и внутренней установки, накладные и переносные. Некоторые виды приборов могут встраиваться в машины, электрические аппараты и другое оборудование.
    3. В соответствии с конструкцией первичной обмотки. Устройства разделяются на одновитковые или стержневые, многовитковые или катушечные, а также шинные, например, ТШ-0,66.
    4. Внутренняя и наружная установка трансформаторов предполагает проходные и опорные способы монтажа этих устройств.
    5. Изоляция трансформаторов бывает сухая, с применением бакелита, фарфора, и других материалов. Кроме того, применяется обычная и конденсаторная бумажно-масляная изоляция. В некоторых конструкциях используется заливка компаундом.
    6. По количеству ступеней трансформации, устройства могут быть одно- или двухступенчатыми, то есть, каскадными.
    7. Номинальное рабочее напряжение трансформаторов может быть до 1000 В или более 1000 В.

    Все характерные классификационные признаки присутствуют в условных обозначениях трансформаторов тока, состоят из определенных буквенных и цифровых символов.

    Параметры и характеристики

    Каждый трансформатор тока обладает индивидуальными параметрами и техническими характеристиками, определяющими область применения этих устройств.

    Номинальный ток. Позволяет устройству работать в течение длительного времени без перегрева. В таких трансформаторах имеется значительный запас по нагреву, а нормальная работа возможна при перегрузках до 20%.

    Номинальное напряжение. Его значение должно обеспечивать нормальную работу трансформатора. Именно этот показатель влияет на качество изоляции между обмотками, одна из которых находится под высоким напряжением, а другая заземлена.

    Коэффициент трансформации. Представляет собой отношение между токами в первичной и вторичной обмотке и определяется по специальной формуле. Его действительное значение будет отличаться от номинального в связи с определенными потерями в процессе трансформации.

    Токовая погрешность. Возникает в трансформаторе под влиянием тока намагничивания. Абсолютное значение первичного и вторичного тока различается между собой как раз на эту величину. Ток намагничивания приводит к созданию в сердечнике магнитного потока. При его возрастании, токовая погрешность трансформатора также увеличивается.

    Номинальная нагрузка. Определяет нормальную работу устройства в своем классе точности. Она измеряется в Омах и в некоторых случаях может заменяться таким понятием, как номинальная мощность. Значение тока является строго нормированным, поэтому значение мощности трансформатора полностью зависит лишь от нагрузки.

    Номинальная предельная кратность. Представляет собой кратность первичного тока к его номинальному значению. Погрешность такой кратности может достигать до 10%. Во время расчетов сама нагрузка и ее коэффициенты мощности должны быть номинальными.

    Максимальная кратность вторичного тока. Представлена в виде отношения максимального вторичного тока и его номинального значения, когда действующая вторичная нагрузка является номинальной. Максимальная кратность связана со степенью насыщения магнитопровода, при котором первичный ток продолжает увеличиваться, а значение вторичного тока не меняется.

    Возможные неисправности трансформаторов тока

    У трансформатора тока, включенного под нагрузку, иногда возникают неисправности и даже аварийные ситуации. Как правило, это связано с нарушениями электрического сопротивления изоляции обмоток, снижением их проводимости под влиянием повышенных температур. Негативное влияние оказывают случайные механические воздействия или некачественно выполненный монтаж.

    В процессе работы оборудования наиболее часто происходит повреждение изоляции, вызывающее межвитковые замыкания обмоток, что существенно снижает передаваемую мощность. Токи утечки могут появиться в результате случайно созданных цепей, вплоть до возникновения короткого замыкания.

    С целью предупреждения аварийных ситуаций, специалистами с помощью тепловизоров периодически проверяется вся действующая схема. Это позволяет своевременно устранить дефекты нарушения контактов, снижается перегрев оборудования. Наиболее сложные испытания и проверки проводятся в специальных лабораториях.

    Силовые трансформаторы устройство и принцип действия

    Ссылка на основную публикацию