Методика и схема прогрузки дифференциальных автоматических выключателей

Прогрузка автоматических выключателей

Здравствуйте, уважаемые посетители сайта http://zametkielectrika.ru.

Сегодня я Вас познакомлю со статьей на тему прогрузка автоматических выключателей.

После выполнения электромонтажа производят ряд приемо-сдаточных испытаний и измерений, согласно нормативным техническим документам, типа ПУЭ и ПТЭЭП. Один из видов испытаний — это проверка работоспособности коммутационных аппаратов защиты на соответствие номинальным данным.

Аппараты защиты предназначены для защиты электрических цепей от коротких замыканий, соответственно, электромонтаж должен проводиться строго по проекту.

Что же такое номинальные данные аппаратов защиты?

Введение

Для автоматических выключателей основными данными (характеристиками) являются:

  • номинальный ток — допустимая величина тока для работы в нормальном режиме
  • ток срабатывания защиты — величина тока при коротком замыкании или перегрузки в электрической линии
  • время срабатывания защиты — уставка по времени при коротком замыкании или перегрузки

Своими словами можно сказать, что прогрузка автоматических выключателей — это измерение основных характеристик автоматического выключателя.

Измерение основных характеристик автоматических выключателей проводит персонал электролаборатории, прошедший специальную подготовку и имеющий высокую квалификацию.

А сейчас от теории перейдем к практики, и я Вам наглядно продемонстрирую как произвести прогрузку автоматического выключателя.

Устройство для прогрузки автоматических выключателей

Для прогрузки (проверки) автоматических выключателей первичным током применяют специальные прогрузочные устройства. В настоящее время имеется широкий выбор этих устройств для разных типов и номинальных токов.

В своей практики я применяю для прогрузки автоматических выключателей устройство со следующей схемой:

В состав схемы устройства для прогрузки автоматических выключателей входит:

  • лабораторный автотрансформатор (ЛАТР)
  • ключ управления (КУ)
  • нагрузочный трансформатор (НТ)
  • амперметр с разными пределами измерения (шунт)
  • трансформатор тока (ТТ)
  • соединительные провода соединяют испытуемый автомат с выводами «регулируемый ток»

Также в состав устройства входит секундомер. Но я его на схеме не обозначил.

Данное устройство позволяет наводить во вторичной обмотке нагрузочного трансформатора ток до 50 (А). Для прогрузки автоматов с большим током, я применяю аналогичную схему, только с более мощным нагрузочным трансформатором и источником питания.

Методика прогрузки автоматических выключателей

Методику прогрузки автоматического выключателя я Вам покажу на примере автомата ВА47-29 с номинальным током 6 (А) и защитной характеристикой «С» российского производства IEK.

Этот автоматический выключатель имеет 2 защиты:

  • электромагнитную (мгновенную)
  • тепловую (с выдержкой времени)

Проверять будем и электромагнитную защиту, и тепловую. Для этого в паспорте на наш автоматический выключатель находим график время-токовой характеристики срабатывания.

Она выглядит следующим образом (более подробно о ней читайте в статье про время-токовые характеристики В, С и D — чем отличаются?):

А по графику мы видим абсолютно все характеристики срабатывания нашего испытуемого автомата. Ось Х — это кратность тока, т.е. отношение тока прогрузки к номинальному току. Ось У — это выдержка времени срабатывания автомата.

Зона срабатывания электромагнитной защиты для данного автоматического выключателя находится в диапазоне 5-10 кратности к номинальному току. Т.е. в нашем случае электромагнитная защита сработает при токе от 30-60 (А) за время не превышающее 0,01-0,02 (сек.).

Электромагнитную защиту будем проверять 8-кратным током 48 (А). При этом токе автомат должен отключиться за время не превышающее 0,01 (сек.) — смотрите желтую линию на графике.

Зона срабатывания тепловой защиты ограничена 2 кривыми, которые показывают разное температурное состояние автомата (горячее и холодное состояние).

Тепловую защиту будем проверять 3-кратным током 18 (А). При этом токе автомат должен отключиться за время от 3 — 80 (сек.) — смотрите красную линию на графике.

Если любая из вышеперечисленных защит не отключает автоматический выключатель согласно отведенному ей времени, то такой автоматический выключатель считается неисправным и к дальнейшей эксплуатации запрещен.

Пример

Для более удобного подключения к автоматическому выключателю устанавливаю на него удлиненные вывода из шпилек.

Подключаем к шпилькам соединительные провода и проводим прогрузку.

Протокол прогрузки автоматических выключателей

После проведения прогрузки автоматического выключателя первичным током (срабатывание электромагнитной и тепловой защиты), все данные по наводимому току и полученной выдержке времени заносим в протокол следующей формы.

Периодичность прогрузки автоматов

Итак, мы подробно рассмотрели статью про прогрузку автоматических выключателей. А ни слова не упомянули о периодичности проверки. Строгих норм по прогрузке автоматов в ПУЭ и ПТЭЭП нет. Периодичность проверки автоматических выключателей определяется нормами заводов-изготовителей. На предприятиях периодичность определяет технический руководитель. Это может быть 1 раз в 3 года, и 1 раз в 6 лет и того реже, все зависит от важности потребителя.

Но я Вам рекомендую во избежании различных проблем, проводить прогрузку автоматических выключателей 1 раз в 3 года.

Эта рекомендация относится к автоматическим выключателям, установленным, как на производстве, так и в быту.

P.S. И на десерт я Вам приготовил видео-урок о прогрузке автоматического выключателя.

198 комментариев к записи “Прогрузка автоматических выключателей”

Очень подробная статья Дмитрий, молодчина! ЛАТР у тебя классный! Хоть и старый но надежный!

Мне вот до сих пор ПУ-1 больше по душе чем всякие Ретомы )))

Михаил спасибо. Ретом-11 имеется в резерве, но на подстанциях пользуюсь УПЗ (устройство для проверки защиты).

Да,я пару раз возил автоматы на прогрузочные испытания,влетело в копеечку.Хорошо сейчас последнее время,всякие там проверяющие органы,не требуют данных протоколов.У нас, в Казахстане,испытанию подлежат автоматы до 200 ампер.И ладно если их пара десятков,а если тысячи полторы. Скажите :легче иметь свой стенд.А метрология,а лицензия?

Содержать электролабораторию, имеющую право прогрузки автоматов первичным током — тоже затратное дело, другое дело когда в перечень разрешенных работ входит еще и другие измерения и испытания. Но я думаю, что если Вам необходимо разово проверить автоматы, то лучше заплатить и специалисты электролаборатории проведут прогрузку (грамотно и качественно).

Важно у автоматов, питающих двигатели, проверить еще и надёжность несрабатывания при токе 80% от уставки согласно Гост.
Я использую для прогрузки Сатурн-М1.

Хороший аппарат, слышал о таком. А что за ГОСТ?

Не будем наивно верить,что современные автоматы пройдя прогрузку,будут и дальше надежно работать.В лучшем случае их хватает на два-три срабатывания.А автоматы ДЭК (Владивосток)умирают сами без всяких испытаний через пол года.Вот такой принцип капитализма,избежать перепроизводства.Это относится и к прочему электроустановочному современному оборудованию.

Нужно быть оптимистичнее. А на счет 2-3 раза срабатываний…Вы не правы. Я специально прогружал автомат ИЭК ВА47-29 С10 не малое количество раз, т.к. он был примером для приходящих на практику студентов. Нареканий нет. Характеристики этого автомата до сих пор в рабочем диапазоне.

Молодец, Дмитрий.
Толково, доступно и правильно.
Насчет лицензии — испытания проводятся для определения исправности, не более. К метрологии отношения не имеют. Нужна госповерка на амперметре.
Относительно ДЭК и ИЭК — высок процент брака, качество нестабильное, есть случаи пожаров. В качестве средств защиты ставить их нельзя.
Имею печальный опыт с ABB модульными, германского производства — ломались после одного срабатывания тепловухи. ABB объяснило, что такая вот партия попалась. От этого не легче.
Пользуем чувашские ETI-маты — пока честные, удобно что весь ассортимент на заводе, отгружают почтой (4 дня).
Сейчас делаем маленький прогрузочник 150А (2-3кг) — пытаемся сделать 2 варианта — с тороидом и с электронным трансформатором, оба с тиристорной регулировкой тока. Надоело здоровенный, на 12кА таскать. Если получится хорошо — поделюсь идеей.

Есть такой вопрос, на какой ток (кратный номинальному) нужно прогружать автоматы с электромагнитным расцепителем?
Где-то видел что 11*Iн, но встречал и другие варианты

Все зависит от типа и характеристики автомата.

Например, у Вас автомат ВА 47-29 С10, зачем его Вам грузить на 11-кратным номинальным током, когда у него по паспорту срабатывание отсечки происходит при 5-10 кратном номинальном токе.

Уж больно толково все было разъяснено в статье, это как-то.. обязывает что ли..
Позвольте, Админ, зацепиться за вопрос.
Он может быть и не так прост, как кажется с первого взгляда.

Придется начать с того, для чего все это делается, и для чего нужны расцепители автомата.
Не зря к каждому из них прилагается паспорт с время-токовой характеристикой электромагнитного и теплового расцепителя.
Автомат обычно рассматривается как устройство защиты цепи, попросту говоря, провода, идущего к устройству. Подключенное устройство защищать себя должно, по идее, само. Это тепловые реле для электродвигателей, предохранители у разной электроники.
В случае длительной ненормативной нагрузки, чтобы провод не поплавился, не загорелся, ставится на него автомат с тепловой защитой, рассчитываемой на номинальный ток кабеля (см. паспорта на кабели, при отсутствии — ПУЭ). для защиты кабеля и ставится тепловой расцкпитель в автомате. Есть отраслевые инструкции по прогрузке, паспорта на прогузочники. В них указано, каким током испытывать автоматы. Сложившаяся практика — 3-кратный ток (чтобы не погибнуть во цвете лет от скуки, ожидая отключения, при проверке десятков-сотен автоматов. Есть апологеты проверки 2-кратным током, спорить не буду). Важно — засечь время и убедиться в попадании в допуски время-токовой характеристики автомата. Это будет совершенно точно проверка теплового расцепителя. Проверка более многократным током — это проверка максимального расцепителя.
То есть проверка срабатывания при коротком замыкании. Понятно, что при коротком замыкании, пусть через пару секунд, но отключит автомат и тепловая защита. а вот максимальный расцепитель обязан сработать за доли секунды. И тут уже на первый план выходит, скорее не функция автомата по защите кабеля, а задача минимизировать неприятности. Весь дом не обесточить. У «вышестоящего» автомата максимальная защита должна срабатывать позже. Чтобы отключилась только поврежденная линия.
Так что если нет возможности проверять автоматическим прогрузочником, считающим сотые и тысячные доли секунды при ударе автомата 6-12 кратным током (в зависимости от характеристики максимального расцепителя), то можно ограничиться и проверкой только тепловой защиты. Гарантировать отключение.

Здраствуйте , выскажу свое личное мнение ,прогрузка автоматов ПРАКТИЧЕСКИ бесполезная вещь ,нужно использовать надежных производителей . А показаное на картинках
Говно ( иначе извините назвать немогу ) тестить безполезно замучеешся. А вобще сайт молодцом . Для рукастых головастых большое подспорье ,наткнулся случайно позабавили коменты к некоторым статьям . Прочитал далеко не все но сложилось впечатление что умалчиваете о новинках )) решил немного высказаца с надеждой на сотрудничество хотелбы узнать город вашего проживания . P.S. Опыт руководства эл.монтажом 14лет.

Вы думаете, что бесполезная, но статистика говорит обратное, причем моя личная статистика. Обычно новые автоматы с завода практически всегда проходят проверку без нареканий. Но после некоторого времени эксплуатации когда вновь приносят эти самые автоматы на проверку, то 30-40% не проходят нормы по времени и попадают под «не годен к дальнейшей эксплуатации».

Денис, не совсем понял, что значит умалчиваю о новинках? Проживаю в Уральском регионе.

Отличная статья, есть подробности.
Так держать!

Теория и методика прогрузки автоматических выключателей

Заключительный этап электромонтажа требует, согласно нормативным техническим документам, проведения определенных испытаний и измерений, среди которых – испытание работоспособности коммутационных аппаратов защиты. Показания последних должны соответствовать номинальным данным.

Главное предназначение аппаратов защиты – не допустить возникновение в электрических цепях коротких замыканий. В связи с этим необходимо проводить электромонтаж строго по проекту.

Так что же представляют собой номинальные данные аппаратов защиты?

Основными характеристиками (данными) для автоматических выключателей являются следующие:

1. Номинальный ток, то есть допустимая величина тока при условии работы сети в нормальном режиме.

2. Ток срабатывания защиты. Это характеристика величины тока при коротком замыкании или перегрузке в электрической линии.

3. Время срабатывания защиты. В этом случае речь идёт об уставке по времени при перегрузке или коротком замыкании.

Прогрузка автоматических выключателей подразумевает под собой измерение ключевых характеристик автоматических выключателей.

Обязанность по проведению измерений основных данных автоматических выключателей ложится на плечи персонала электролаборатории. Устройство для прогрузки автоматов различных типов позволяет применять их для проверки вольтамперных характеристик автоматических выключателей. Так, в соответствии с руководством ПУЭ п. 3.1.8 защита электрических сетей от коротких замыканий (КЗ) обеспечивает требования селективности и минимальное время отключения. В требованиях ПУЭ п. 1.7.79 и п. 7.3.139 представлены значения отношений минимального расчетного тока КЗ к Iноминальному току плавкой вставки или расцепителя, которые обеспечивают надежное отключение поврежденной электрической сети.

В системе TN максимальное время автоматического защитного отключения не должно быть больше 2 и 4 десятых секунд соответственно для 380 и 220В (ПЭУ п. 1.7.79 табл. 1.7.1).

Для автоматического отключения сети в электроустановках до 1000 Вольт с глухозаземлённой нейтралью, проводимость защитных нулевых проводников выбирается с учетом максимального короткого замыкания и должна быть такой, чтобы при возникновении аварийной ситуации возникал ток превышающий в 4 раза Iноминального плавкой вставки и в 6 раз I расцепителя автоматического выключателя с обратнозависимой характеристикой (ПЭУ п. 7.3.139).

Читайте также:  Как самостоятельно провести электричество в гараж — пошаговая инструкция

Автоматические выключатели с электромагнитным расцепителем (без временной выдержки), при защите сетей, используют кратность тока КЗ согласно требований ПЭУ п.1.7.79.

Для вновь смонтированных электроустановок или после их реконструкции используется методика прогрузки автоматов и испытаний на основании ПУЭ 1.8.37 п.п. 3.1, 3.2. Так, у выключателей с Iноминальным 400 Ампер и выше, проводится проверка сопротивления изоляции, которое должно быть не меньше 1Мом (ПУЭ 1.8.37 п. 3.1). Кроме того, проводится проверка действия расцепителя с мгновенным действием (электромагнитным расцепителем), и должно обеспечивать срабатывание выключателя при токе не более 1,1 номинального тока отключения, рекомендуемого заводом-изготовителем.

Если электроустановка смонтирована в соответствии с главами 7.1 и 7.2 раздела 6 ПУЭ, тогда проверяют все секционные и вводные выключатели, автоматы цепей автоматического пожаротушения и пожарной сигнализации, автоматы аварийного освещения, а так же не менее 2% выключателей групповых и распределительных сетей. В других электроустановках проверка аналогичная, но не 1% выключателей. В случае обнаружения автоматических выключателей с не соответствием характеристик требованиям завода изготовителя, проводится проверка всех автоматов.

Для электроустановок находящихся в эксплуатации, периодичность прогрузки автоматов осуществляется каждые три года. Проверка действий расцепителей автоматов проводится согласно ПТЭЭП.

Как производится прогрузка автоматических выключателей?

Устройство прогрузки (проверки) автоматических выключателей

Для того, чтобы проверить первичным током автоматические выключатели, требуются специальные прогрузочные устройства. На сегодняшний день выбор таких устройств очень широк, легко найти подходящее для любого типа и номинального тока.

Это устройство с такой схемой:

Предложенная схема устройства для прогрузки автоматических выключателей состоит из:

лабораторного автотрансформатора (ЛАТР)

ключа управления (КУ)

нагрузочного трансформатора (НТ)

амперметра с различными пределами измерения (шунт)

трансформатора тока (ТТ)

соединительных проводов, которые соединяют испытуемый аппарат с выводами «регулируемый ток»

Обратите внимание: на схеме не обозначен секундомер, который тоже являются важной частью устройства.

Подобное устройство даёт возможность во вторичной обмотке нагрузочного трансформатора наводить требуемый ток.

Методика прогрузки (проверки) автоматических выключателей

Какова методика прогрузки автоматического выключателя? Рассмотрим её на примере автомата российского производства IEK ВА47-29 с номинальным током 6 (А) и защитной характеристикой «С».

Предложенный автоматический выключатель обладает двумя защитами:

тепловой (с выдержкой времени)

Необходимо проверить обе защиты: и тепловую, и электромагнитную. защиту. Для того, чтобы сделать это, нужно заглянуть в паспорт автоматического выключателя и найти там график времятоковых характеристик срабатывания.

Выглядит график следующим образом:

В этом графике отражен полный спектр характеристик срабатывания испытуемого нами аппарата. Ось Х демонстрирует кратность тока, другими словами, отношение к номинальному току тока прогрузки. Ось У отражает выдержку времени срабатывания автомата.

Для данного автоматического выключателя зона срабатывания электромагнитной защиты находится в диапазоне 5-10 кратности по отношению к номинальному току. Иначе говоря, в этом конкретном случае электромагнитная защита будет срабатывать за время не больше 0,01-0,02 секунды при токе в 30-60 (А).

Проверим электромагнитную защиту восьмикратным током 48 (А). При таких показателях тока автомат должен успеть отключиться за время, не превышающее 0,01 секунды: обратите внимание на желтую линию, изображенную на графике.

Зона срабатывания тепловой защиты ограничивается двумя кривыми. Эти кривые демонстрируют различное температурное состояние аппарата – горячее или холодное.

Для проверки тепловой защиты используем 3-кратный ток 18 (А). При заданных условиях, если всё в норме, автомат должен будет отключиться в интервал времени от 3 до 80 секунд, что показано на нашем графике красной линией.

Автоматический выключатель неисправен, при условии, что хотя бы одна из двух вышеназванных защит при проверке не отключит его в отведенные временные рамки. В таком случае автоматический выключатель нельзя допускать к дальнейшей эксплуатации.

Протокол прогрузки (проверки) автоматических выключателей

Все данные по выдержке времени и наводимому току, которые были получены по итогам проведения проверки автоматического выключателя первичным током, то есть проверки срабатывания электромагнитной и тепловой защиты, необходимо тщательно занести в протокол. Стандартная форма протокола выглядит следующим образом:

Периодичность прогрузки автоматических выключателей

Итак, нами была подробно рассмотрена прогрузка автоматических выключателей, однако мы ничего не сказали о том, как часто необходимо проводить такую проверку. Что касается периодичности проведения прогрузок автоматических выключателей, то её определяют нормы заводов-изготовителей.

Проверка автоматических выключателей напряжением до 1000 В

1. Общие положения.

Данная методика предназначена для производства измерений времени срабатывания аппаратов защиты с тепловыми и электро­магнитными расцепителями с целью проверки выполнения требова­ний пункта 413 ГОСТ Р50571.3-94, обеспечивающего безопасность косвенного прикосновения к нетоковедущим металлическим частям оборудования в момент замыкания фазного проводника. Проводится инженерами электролаборатории.

Время отключения для распределительных цепей не должно превышать 5 с, если сопротивление защитного заземления меньше

где Uo- номинальное фазное напряжение,

Zo – сопротивление цепи фаза-нуль,

т.е. достаточно мало, чтобы обеспечить безопасное напряжение прикосновения на металлических час­тях оборудования, и 0,4 с для цепей, питающих передвижное и пере­носное оборудование и для распределительных цепей, в которых не выполняется вышеуказанное условие для сопротивления защитного заземления.

2 Методы измерения.

Для определения времени срабатывания аппаратов защиты используется испытательное устройство “Сатурн-М”.

Принцип действия испытательного устройства основан на соз­дании искусственного замыкания за местом установки проверяемого аппарата защиты с плавным регулированием значения тока, изме­рением его эффективного значения и измерением времени от нача­ла возникновения заданного тока короткого замыкания до момента срабатывания аппарата защиты. Устройство “Сатурн-М” имеет циф­ровую индикацию значений указанных величин.

ПОДГОТОВКА К РАБОТЕ

1.Заземлить корпус устройства “Сатурн-М” с помощью клеммы “Корпус” медным проводом с сечением не меньшим, чем подводящие провода, но не менее 4 кв.мм.

2.При использовании силового блока соединить разъем его ка­беля с розеткой на базовом блоке. При автономной работе базового блока вставить в розетку разъем-заглушку.

З. Собрать схему испытаний устройств защиты и согласно схеме рис. 1 закрыть клеммы изоляционной крышкой.

Рис. 1. Применение устройства “Сатурн-М” для проверки непо­средственно от сети 380 В постоянно подключенного к сети (АВ1) и подключаемого на время проверки (АВ2) автоматического выключа­теля. Тумблер “Останов.” должен быть в положении “Внутр.”.

4.Подключить сетевую вилку к розетке 220 В, 50 Гц.

5.Включить тумблер питания устройства. При этом должны пройти начальные тесты. Состояние “0000” и включенные светодиоды “Тепл.”, “2500”, “Ввод”, “Ток” соответствуют готовности к рабо­те.

б.Подать входное напряжение, при этом должен загореться светодиод “U вход”.

ВЫБОР РЕЖИМА

1.Устройство имеет 4 режима работы:

– проверка тепловых расцепителей тока и РЗ с выдержкой вре­мени:

– проверка электромагнитных расцепителей и РЗ без выдержки времени:

– ручной режим проверки,

– непрерывный режим в качестве тиристорного регулятора мощности.

Выбор режима осуществляется кнопкой “Режим” путем их по­следовательного циклического перебора с индикацией включенного режима.

2.Устройство имеет 4 предела измерения действующего значе­ния тока: 25 А, 250 А, 2500 А и работа с внешним измерительным трансформатором тока – ТТ, кА.

Выбор предела осуществляется кнопкой “Предел” аналогично кнопке “Режим”.

З.Для ввода любого из пяти параметров необходимо выбрать режим “Ввод”, нажать кнопку соответствующего параметра и затем ввести его числовое значение.

При этом первая цифра появится в правой позиции индикатора, а при вводе следующей цифры сдвигается на одну позицию влево. Соответственно, при вводе пятой цифры первая пропадает, что по­зволяет исправлять ошибки ввода параметров.

Ввод параметров можно производить в любой последователь­ности.

4.В устройстве предусмотрен ввод следующих параметров:

– “Ток А” – предельное эффективное значение тока для провер­ки тепловой и электромагнитной отсечки автоматов;

“Длит. с ” предельная длительность вьючения тиристоров при автоматической и ручной проверке;

– “Ток ТТ кА” – значение первичного тока применяемого внешне­го измерительного трансформатора тока для последующего автома­тического пересчета результата при выводе на индикатор;

– “Откр. %° – угол открытия тиристоров, задаваемый в ручном и непрерывном режимах;

– “Шаг откр., %” – ступень роста угла открытия тиристоров для автоматических режимов работы.

5.По включению питания производится автоматический ввод наиболее оптимальных значений параметров:

Ток, А 0000

Длит., с 00.02

Ток ТТ, кА 25.00

Откр., % 0000

Шаг откр., % 0002

В случае необходимости они заменяются оператором другими.

6.При работе с параметрами предусмотрено два режима рабо­ты – ввод и просмотр результата, выбираемые либо вручную, либо автоматически.

В режиме “Ввод” можно присваивать всем параметрам любые значения.

В режиме “Результат” можно только просматривать значение соответствующего параметра без возможности его изменения.

При этом имеются следующие особенности:

– параметры “Ток” и “Длит.” в режиме “Результат” являются ре­зультатом измерения и могут отличаться от своих значений в режи­ме “Ввод”‘

– параметры “Ток ТТ и “Шаг” могут только вводиться операто­ром и никогда сами не изменяются в любых режимах работы;

– параметр “Откр.” может вводиться оператором в режиме “Ввод”, но может и изменяться при автоматических режимах работы, так как ему присваивается значение текущего угла открытия тиристоров при наборе заданного значения тока. В режиме “Ввод” и “Результат” высвечивается одинаковое значение угла открытия. При автоматических режимах работы можно для справки посмотреть угол открытия тиристоров после окончания режима “Пуск”. Если при этом перейти в ручной режим, то угол открытия останется от предыдущего автоматического режима.

7.В устройстве предусмотрены следующие ограничения при вводе параметров;

-длительность тока 0,01 . 99,99 с:

-задаваемое значение тока при 25 А, 250 А, 2500 А,

автоматических режимах проверки 99,99.кА;

-задаваемый угол открытия тиристоров 0. 100%;

-задаваемый шаг угла открытия тиристоров 1. 10%.

8.В случае неправильного задания параметров по нажатию кнопки “Пуск” индикатор будет мигать, показывая неправильно вве­денный параметр.

В случае задания значения тока на одном пределе, при перехо­де на другой число будет смещаться, и, если левая цифра выйдет за границу индикатора, то он будет мигать. При этом ввод первой же цифры сразу отменит ранее введенное значение.

В случае просмотра результата измеренного тока переключе­ние пределов аналогично смещает выводимое на индикатор число вместе с запятой. При выходе левой значащей цифры за границу индикатора также будет его мигание.

9.Работа с нагрузочным трансформатором требует примене­ния внешнего сигнала “Останов.” для фиксирования времени отклю­чения автомата.

При испытании обычных автоматов используются свободные контакты одного из размыкателей, которые будут разомкнуты при срабатывании аппарата. Их подключают к клеммам “Останов.” уст­ройства и переводят тумблер в положение “Внешн”

В других случаях при использовании нормально разомкнутых контактов проверяемого аппарата, тумблер устанавливают в поло­жение “Внутр.”.

10.Если при включении питания на индикаторе высвечивается число с символом t в левой позиции, то работа с устройством не

возможна. Диагностика неисправностей приведена в Приложении 1 описания устройства.

ПРОВЕРКА ТЕПЛОВОГО РАСЦЕПИТЕЛЯ И РЕЛЕЙНОЙ ЗАЩИТЫ С ВЫДЕРЖКОЙ ВРЕМЕНИ

1.Выбрать предел измерения и ввести значение проверочного тока.

2.Ввести длительность протекания тока на 30 – 50 % больше ожидаемого времени срабатывания аппарата.

З.Ввести шаг угла открытия тиристоров (типичное значение 2%).

4.Нажать кнопку “Пуск”.

Периодически в течение 0,5 с на индикаторе будет высвечи­ваться измеренное за 0,02 с значение тока до достижения им задан­ного, а затем будет работать секундомер до истечения заданной длительности.

В случае отключения автомата на индикаторе останется время отключения, а измеренное значение тока можно посмотреть, нажав кнопку “Ток” в режиме “Результат”.

В случае перегрузки входных цепей предел автоматически пе­реключится на более грубый.

В любой момент можно прервать процесс измерения, нажав кнопку “Стоп”.

При достижении угла открытия, равного 100%, процесс набора тока прекратится, так и не достигнув заданного значения. Необходи­мо перейти на схему измерения по рис. 2 с нагрузочным трансфор­матором тока.

Схема

Рис. 2. Применение устройства “Сатурн-М” для проверки авто­матических выключателей с нагрузочным трансформатором и оста­новом секундомера от резервных контактов АВ2 при использовании встроенного (а) и внешнего (б) трансформаторов тока. Тумблер “Останов.” должен быть в положении “Внешн.”. Резистор R=50-100 0м, 500 -150 Вт.

ПРОВЕРКА ЭЛЕКТРОМАГНИТНОГО РАСЦЕПИТЕЛЯ И ТОКОВОЙ ОТСЕЧКИ

1.Выбрать предел измерения и ввести значение тока через ав­томат на 20-30% больше ожидаемого тока отсечки.

2.Ввести длительность проверочного импульса тока (типичное значение – 0,02 с).

З.Ввести шаг угла открытия тиристоров (типичное значение 2 %).

4. Нажать кнопку “Пуск”.

Периодически в течение 0,5 с на индикаторе будет высвечи­ваться измеренное на заданную длительность значение тока, сопро­вождаемое включением светодиодов “Ток”, “Результат”, пока оно не достигнет заданного значения тока.

Читайте также:  Как поменять счетчик электроэнергии в квартире и частном доме

В случае отключения автомата на индикаторе останется время отключения, а измеренное значение тока можно посмотреть, нажав кнопку “Ток” в режиме “Результат”.

Можно установить ручной режим проверки.

1.Ввести длительность протекания тока.

2.Ввести желаемый угол открытия тока.

3.Выбрать ожидаемый предел измерения тока.

4. Нажать кнопку “Пуск”.

На индикаторе будет работать секундомер до истечения за­данного времени или до отключения автомата.

Измеренное значение тока можно посмотреть, нажав кнопку “Ток” в режиме “Результат”

Если предел измерения выбран неправильно, то при перегрузке входных цепей устройства индикатор будет мигать, высвечивая не­корректно измеренное значение тока, требуя перевода на более гру­бый предел. Можно установить непрерывный режим работы.

1.Ввести желаемый угол открытия тиристоров.

2.Нажать кнопку “Пуск”.

На индикаторе будут высвечиваться минуты, секунды до оста­новки по кнопке “Стоп” или при срабатывании подключенного авто­мата.

Предел автоматически установится на 2500 А. Для работы с внешним трансформатором тока:

1.Подключить вторичную обмотку трансформатора тока к клеммам “12=5 А” устройства.

2. Выбрать предел “ТТ, кА”.

3.Ввести значение первичного тока применяемого ТТ. При этом все дальнейшие показания тока будут пересчитаны и отображаться на индикаторе в кА.

УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

1.При работе с устройством “Сатурн-М”, “Сатурн-MI” необхо­димо строго соблюдать общие требования техники безопасности, распространяющиеся на устройства релейной защиты и автоматики энергосистем.

2.К эксплуатации допускаются лица, изучившие настоящую ме­тодику, инструкцию по эксплуатации и прошедшие проверку знаний правил техники безопасности и эксплуатации электроустановок электрических станций и подстанций.

3.Подключение входных клемм устройства к токоведущим це­пям должно производиться после проверки отсутствия напряжения.

4.При проверке автоматических выключателей непосредствен­но от сети 380 В подключение входных клемм должно производиться через автоматический выключатель с уставками большими, чем у проверяемого.

5.Рекомендуется входное напряжение подавать после включе­ния питания устройства, а снимать -до его выключения.

б.Соединительные провода надо сначала подключать к уст­ройству, а затем уже к токоведущим цепям.

7.На все время измерения входные клеммы устройства должны быть закрыты изоляционной крышкой.

8.Перед работой с устройством клемму “Корпус” устройства “Сатурн-М” необходимо соединить с контуром заземления.

9.При работе необходимо следить за допустимой длитель­ностью протекания тока через тиристоры для предотвращения пробоя тиристоров:

Проверка автоматических выключателей. Прогрузка и испытание автоматов

Электротехническая лаборатория компании Эколайф оказывает услугу Проверка автоматических выключателей. Прогрузка и испытание автоматов. По результатам испытания составляется протокол в технический отчет ЭТЛ.

Содержание:
1. Проверка работы расцепителей автоматических выключателей
2. Как проверяется срабатывание автоматических выключателей?
3. Сколько автоматических выключателей требуется проверить?
4. Необходимость эксплуатационной проверки и прогрузки автоматов
5. Результаты проверки автоматических выключателей

Для подтверждения безопасности электрооборудования его требуется проверять на исправность и соответствие установленным требованиям. Ситуации, в которых требуется проверка автоматических выключателей:

  • прием в эксплуатацию после установки электроустановки;
  • спустя установленный системой ППР срок эксплуатации;
  • после проведения капитального ремонта электрических устройств;
  • после текущего ремонта;
  • в профилактических целях в межремонтный период.

В ходе испытаний проводится проверка соответствия характеристикам, которые задаются оборудованию производителем. Цель проверки — установить, обеспечивает ли оборудование такие параметры:

  • предотвращение поражения электрическим током при коротком замыкании (это условие обязательно в том случае, если других защитных мер для полной безопасности недостаточно);
  • защиту электросети от возгораний и перегрузок при технологических неисправностях или повреждении изоляции.

Чтобы автоматический выключатель защищал от поражения электрическим током, он должен обеспечивать отключение от питания участка электрической цепи, который зависит от тока одофазного замыкания.

Перед проверкой автоматических выключателей часто задаются следующие вопросы:

  1. Сколько автоматических выключателей необходимо испытывать?
  2. Требуется ли проведение проверки в ходе эксплуатационных испытаний?
  3. Требуется ли периодически повторное проведение проверок?
  4. Испытания проводятся в лаборатории или у заказчика?
  5. Что делать, если оборудование проверку не прошло?
  6. Требуются ли резервные автоматические выключатели?

Проверка работы расцепителей автоматических выключателей

Основная часть испытаний автоматов — это проверка исправной работы их расцепителей. Дополнительно проверяется качество монтажа выключателей, затяжка контактов, соответствие защитного оборудования проектной документации, но эти параметры уже второстепенны.

Существует большое количество модификаций автоматических выключателей: воздушные, модульные, предназначенные для защиты двигателей, в литом корпусе. Самыми распространенными являются модульные автоматические выключатели, устанавливаемые на DIN-рейку, поэтому целесообразно будет рассмотреть ход проверки на их примере.

После срабатывания одного из расцепителей автоматически выключатель выполняет свою функцию — отключает питание определенного участка цепи. Расцепители по типу могут быть тепловыми или электромагнитными, но в современном оборудовании чаще всего используют оба типа для наиболее надежной защиты. Автоматы с одним типом расцепителей имеют гораздо более узкую сферу применения.

Автоматы с тепловыми расцепителями обеспечивают защиту электросети от перегрузки линии. Такой расцепитель представляет собой двухслойную биметаллическую пластинку. Когда возникает перегрузка, этот элемент выключателя нагревается. Под воздействием температуры происходит деформация пластины, что и приводит к расцеплению.

Электромагнитные расцепители нужны для защиты линии от разрушительного воздействия тока КЗ. Этот элемент прибора представляет собой соленоид с подвижным сердечником. Механизм расцепления приводится в действие сердечником, который втягивается магнитным полем, созданным под воздействием токов КЗ.

В свою очередь электромагнитные расцепители подразделяются на типы в зависимости от временных и токовых характеристик, то есть от того, за какое время и токи какой силы приводят выключатель в действие. Обозначаются типы электромагнитных расцепителей заглавными латинскими буквами. К наиболее распространенным относятся типы, соответствующие буквам B, C, D.

В этих элементах мгновенное расцепление происходит при таких стандартных диапазонах:

  • B — в диапазоне от 3-кратного до 5-кратного номинального тока;
  • С — в диапазоне 5-10-кратного номинального тока;
  • D — 10-20-кратного номинального тока.

При низких пусковых токах в системе допустимо использовать автоматы с расцепителями типа B. В этой же сети целесообразно установить входной автомат с характеристиками C. Эти же устройства допустимо устанавливать в сети с умеренными пусковыми токами. Для защиты линии с высокими пусковыми токами подходят автоматы типа D.

ГОСТ Р 50345-2010 “Аппаратура малогабаритная электрическая. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения” регламентирует, как и какие именно автоматы нужно испытывать.

Таблица 7 Время-токовые рабочие характеристики

ИспытаниеТип
расцепителя
Испытательный
ток
Начальное
состояние
Время расцепления
или нерасцепления
Требуемый
результат
Примечание
aB, C, D1,13 InХолодноеБез
расцепления
bB, C, D1,45 InСразу же после испытанияРасцеплениеНепрерывное нарастание тока в течение 5 с
cB, C, D2,55 InХолодноеРасцепление
dB3 InХолодноеt 63 А.
  • После завершения второго этапа с выключателя снимается напряжение, ему дают вернуться в первоначальное «холодное» состояние. Далее на прибор подается ток, больше In в 2,55 раза. Если In 32 А расцепление должно произойти за 2 минуты.
  • Для проведения всех этапов испытания достаточно включить аппарат «Синус» и установить требуемое значение тока в Амперах. После этого автоматически включается таймер, который отключается после расцепления.

    Подобным же образом проводится и испытание автоматических выключателей с электромагнитными расцепителями:

    1. На «холодный» автомат подается ток в 3, 5 или 10 А в зависимости от его типа (B, C, D – соответственно). Мгновенный расцепитель должен вызвать отключение за 0,1 секунду или более.
    2. Автомат возвращается в холодной состояние, а затем на него подается ток 5, 10 или 20 А, также в зависимости от типа расцепителя. Сработать устройство должно менее, чем за 0,1 секунды.

    При выполнении испытания ток, который подается на прибор, возрастает от минимального значения до верхней границы. Происходит это практически мгновенно. Во время срабатывания расцепителя фиксируется величина тока в этот момент и время, которое прошло с достижения током необходимого значения.

    Сколько автоматических выключателей требуется проверить?

    Даже на среднем объекте автоматических выключателей может быть сотни, поэтому проверить все может быть достаточно проблематично. К тому же это вызовет дополнительные траты.

    Согласно ПУЭ (ПУЭ, п. 1.8.37, пп. 3) проверять необходимо определенную часть от всех выключателей. В жилых, административных, общественных, бытовых зданиях, спортивных сооружениях, клубных учреждениях, на зрелищных мероприятий проверять должно не менее 2% автоматических выключателей распределительного типа и групповых сетей, а также вводные, пожарной сигнализации, автоматического пожаротушения, цепи аварийного освещения, секционные выключатели. В прочих электрических установках возможно снижение количества проверяемых автоматов распределительного типа и групповых сетей до 1%. В остальном — правила те же.

    Заказчик сам может решать, где проводить испытания — в лабораторных условиях или непосредственно на объекте. В последнем случае присутствие специалистов лаборатории на объекте может быть достаточно длительным, но это вполне выполнимо, если вы обратитесь в нашу лабораторию. Наши специалисты проведут на объекте столько времени, сколько потребуется.

    Если объект еще не эксплуатируется, то проверка в лаборатории будет значительно проще и удобней. Но если объект введен в эксплуатацию, то потребуется замена проверяемых автоматов резервными. В этом случае заказчику потребуется заранее подготовить их а необходимом количестве. Резервные выключатели будут установлены на место проверяемых, чтобы электроустановка продолжала работать во время выполнения испытаний.

    Если же заказчик не считает целесообразным приобретать большое количество резервного оборудования, то проводить испытание придется в нерабочие часы — вечером и ночью, а также в выходные дни. В этом случае потребителю не придется испытывать неудобства от отключения сети.

    Заказчики могут выбрать вариант проведения испытаний, которые предложат наши специалисты. Окончательное решение всегда остается за ответственным лицом: инженером по технической безопасности или владельцем.

    Необходимость эксплуатационной проверки и прогрузки автоматов

    Требуется ли проведение проверку автоматических выключателей в ходе эксплуатационных испытаний, может решать технический руководитель объекта. В нормативной документации не указано точно, с какой периодичность должны проводиться проверки, поэтому их частота полностью в компетенции лица, ответственного за техническую безопасность объекта.

    Специалисты все же рекомендую время от времени проводит проверку исправности автоматов. Это объясняется тем, что любой прибор со временем изнашивается и может выйти из строя. Чтобы убедиться в том, что автоматы выполняют свою защитную функцию, стоит установить определенную периодичность, с которой будут проводится эксплуатационные испытания.

    Для установления периодичности лучше всего опираться на рекомендации производителя приборов. Как правило, приборы европейского производства можно проверять относительно редко. А вот если в системе установлены автоматы, изготовленные в Китае или на отечественном заводе, то рекомендуется проводить проверки чаще. В любом случае окончательное решение остается за заказчиком.

    Результаты проверки автоматических выключателей

    Результаты проведения испытательных работ заносятся в специальный протокол. В документе фиксируется срабатывание или несрабатывание автомата, время срабатывания и ток в момент срабатывания.

    Выключатель должен быть исключен из сети и заменен аналогичным в следующих случаях:

    • при токе несрабатывания происходит расцепление;
    • при токе срабатывания расцепление не происходит;
    • автомат срабатывает, но этот момент не вписывает в допустимый интервал времени срабатывания.

    Если в ходе испытаний был выявлен хотя бы один выключатель, который подлежит замене, то по требованиям ПУЭ необходимо дополнительно проверить такое же количество приборов, которое было отправлено на первичную проверку.

    Чаще всего выявление неисправных выключателей происходит при эксплуатационных испытаниях. Если проверка осуществляется в рамках передачи объекта в эксплуатацию, то вероятность обнаружения неисправности значительно ниже. Использование надежного оборудования и строгое соблюдение регламента испытаний позволяет нам выявить дефектные выключатели с высокой точностью. Это позволяет максимально защитить электросеть, объект и людей, которые проживают на нем, работают или посещают его. И хотя замена выключателя может быть достаточно затратной, повышение безопасности этого стоит.

    Случается, что из-за короткого замыкания происходит поломка другого оборудования сети: вентиляционного или промышленного. В результате затраты становятся еще больше, поэтому вклад средств в испытания и замену выявленных неисправных автоматов можно рассматривать как экономию в долгосрочной перспективе.

    Как проверяются электролабораторией дифавтоматы

    Вне зависимости от того, в какой форме в электросети реализована защита от сверхтоков, проверка защитных модулей должна выполняться согласно методикам, разработанным для конкретного типа функционального оборудования. В связи с чем, проверка дифференциального автомата выполняется с учётом двух алгоритмов – для УЗО и для автоматических выключателей.

    Отличие от стандартной методики проверки АВ в данном случае заключается в том, что при проведении тестов следует учитывать взаимное влияние двух приборов, если их механическое или электрическое разделение невозможно.

    В данном обзоре рассмотрено, какие основные показатели должны быть измерены в ходе лабораторных испытаний дифавтоматов и что надо учитывать, чтобы в ходе тестов не повредить УЗО.

    Особенность проверки дифавтомата

    В статье «Зачем и как проверяется работоспособность УЗО» мы уже рассказывали о том, что такое дифавтомат и чем он отличается от УЗО. Здесь же напомним, что данный прибор является комбинацией из классического автоматического выключателя с электронным или тепловым (и электромагнитным) расцепителем и системы дифференциального контроля токов утечки.

    По сути, это два разных прибора в одном корпусе, соединённых последовательно.

    Пределы срабатывания АВ в дифавтоматах выбираются такими, чтобы максимальный импульс тока, который может пройти через прибор, был меньше максимального допустимого тока, проходящего через УЗО.

    Теоретически, проверка дифавтоматов может состоять из двух автономных циклов:

    • испытание УЗО;
    • проверка устройства автоматического отключения.

    Учитывая, что мощность тестовых импульсов при тестировании УЗО намного меньше тех, которые необходимы для проверки защиты от сверхтоков, испытание этого субмодуля в дифавтомате производится практически по той же схеме, что и для отдельного прибора (данная методика подробно рассмотрена в статье «Как выполняется тестирование УЗО в лабораторных условиях»).

    Нормативной базой в данном случае являются следующие стандарты:

    • ГОСТ Р 51327.1-2010 (параметры и методы проверки УЗО);
    • ГОСТ Р 50345-2010 (автоматические выключатели защиты от сверхтоков, параметры и методы проверки работоспособности);
    • ГОСТ Р МЭК 60898-2-2006 (корректирующие уточнения к приведенным выше стандартам).

    Кроме этого, при разработке технологических карт для ЭТЛ рекомендуется использовать термины и определения, изложенные в ГОСТ 50031-2012.

    Виды автоматических выключателей

    Любое методическое руководство должно оговаривать, для каких типов защитных автоматов оно разработано.

    В данном случае в состав дифавтоматов входят АВ («автоматические выключатели»), используемые в сетях до 1000 В, максимальное напряжение между фазами которых не превышает 440 В.

    В приведенных выше стандартах приводится три классификационных схемы для таких приборов.

    По количеству полюсов

    В зависимости от количества контролируемых фазных линий автоматические выключатели делятся на следующие категории:

    • однофазные (одно- и двухполюсные) или трехфазные (трех- и четырехполюсные);
    • для постоянного или переменного токов.

    Отметим, что проверка правильности монтажа присутствует практически в каждой методике тестирования, поэтому в таблице ниже мы привели информацию, на основании которой можно сделать вывод о корректности схемного размещения того или иного выключателя.

    Виды автоматических выключателей

    Под однополюсным автоматом в данном случае понимается прибор, контролирующий превышение тока только по одной фазе.

    Различие между однополюсными и двухполюсными автоматом

    По току мгновенного расцепления

    На сегодняшний день различают две группы выключателей, принадлежащих разным диапазонам токов мгновенного отключения (ранее было три):

    • группа «B» (от 3 до 5 In);
    • группа «C» (от 5 до 10 In).

    Диапазоны токов мгновенного расцепления

    В ходе проверки правильности выбора защитных автоматов следует учитывать не только номинальную мощность сети, но и пусковые токи некоторых электромашин, которые могут достигать 5-7 In.

    Напомним, что под номинальным током защитного автомата может пониматься как максимально допустимый ток, проходящий через коммутационную цепь автомата, так и предельные токи, протекание которых через тепловой расцепитель не приводят к размыканию контактов.

    В данном случае под In подразумевается максимальный нерасцепляющий ток.

    По постоянной времени

    Этот классификатор применяется к выключателям, работающим в цепях с постоянным током.

    Различают две подгруппы выключателей, разделяемых по этому параметру:

      с постоянной времени Тс Что проверяется

    Полный список параметров, подвергаемых контролю при разработке или лабораторных испытаниях защитных автоматов, приведен в ГОСТ Р 50345-2010.

    На практике чаще всего проверяют нормы времени и токов, отводимые на срабатывание расцепляющего механизма.

    Предельные значения этих параметров с привязкой к токовым категориям устройств приведены в следующей таблице:

    Время-токовые характеристики

    В целом, испытательный алгоритм состоит как из измерительных операций, так и из действий по проверке общего технического состояния защитной системы:

    • контроль механической износостойкости;
    • проверку устойчивости к механическим ударам;
    • измерение время-токовых параметров;
    • всесторонний контроль электроизолирующих свойств.

    Необходимо отметить, что из-за критических перегрузок, возникающих в ходе прогрузки защитных автоматов, соответствующая технологическая карта действий должна содержать операции по вторичной проверке работоспособности прибора после испытаний на короткое замыкание.

    Методика испытаний дифавтоматов

    Каждая конкретная методика испытаний защитных отключающих устройств разрабатывается с учётом специфических особенностей участка, на котором они эксплуатируются.

    В любом случае она должна базировать на алгоритмах, рассмотренных в приведенных выше стандартах. В пакете документов, подаваемом на аттестацию электроизмерительной лаборатории, она должна быть оформлена отдельной инструкцией.

    Следует отметить, что испытания данного типа выполняются с подачей мощных импульсов тока, что часто приводит к неплановому срабатыванию УЗО, поэтому практическая технология тестирования дифавтомата должна предусматривать сборку специальных измерительных схем или коммутационное разделение автомата и УЗО.

    Учитывая большое разнообразие аппаратных решений для дифференциального модуля и, как следствие, непредсказуемость их поведения, чаще всего прибегают ко второму варианту, размыкая цепи, соединяющие УЗО и АВ.

    Провода, соединяющие УЗО и автомат

    Измерение время-токовых параметров производят с применением специального оборудования, позволяющего отслеживать временные параметры мощных импульсов тока. Электролаборатории, оказывающие услуги данного типа, для этих целей обычно используют прибор УПТР.

    Прибор УПТР в работе

    Испытания и замеры проводятся с помощью схемы, изображённой на следующем рисунке:

    Схема УПТР

    Результаты измерений регистрируются в рабочем журнале и после математической обработки оформляются в виде протокола испытаний.

    Электротехническая лаборатория «Мега.ру» принимает заказы на проведение испытаний всех видов электроустановок, включая системы защитного отключения. Уточнить детали сотрудничества и сделать заказ на проведение работ можно по телефонам, размещенным в разделе «Контакты».

    Для чего нужен дифавтомат, и какой принцип его работы разного типа: чем отличается, устройство и схема

    Из данной статьи вы узнаете об устройстве, принципе работы дифавтомата, а также его отличиях от других защитных электрооборудований.

    Защита от удара током при помощи дифференциального автомата

    Современное общество отличается широким использованием разнообразного электрооборудования. Нередко встречаются случаи, когда вновь приобретенная техника подключается к проводке, не рассчитанной на высокие потребляемые токи.

    Другая ситуация: вместо дорогих устройств известных производителей в целях экономии приобретаются конструкции малоизвестных брендов. Недобросовестные производители снижают себестоимость изделий в ущерб качеству. В целях повышения безопасности людей, предотвращения пожаров разработаны разнообразные устройства защиты.

    Что такое дифференциальный автомат и для чего нужен

    Дифференциальный автомат конструктивно объединяет в едином корпусе два типа защиты:

    • От перегрузки (короткого замыкания, превышения допустимого значения тока потребления);
    • От токов утечки.

    Первый тип используется в токовых автоматах и предусматривает отключение фазного и нулевого проводников при увеличении тока нагрузки выше того, на который рассчитан автомат. Второй тип защиты используется в УЗО – устройствах защитного отключения. Принцип действия заключается в сравнении токов в нулевом и фазном проводах. Наличие разницы говорит о появлении тока утечки, который может быть опасен.

    Фактически, дифавтомат объединяет в одном корпусе два устройства.

    Достоинства и недостатки

    Дифавтомат обладает следующими достоинствами:

    • Экономия места в распределительных щитах ввиду совмещенности двух устройств.
    • Упрощение монтажа и сокращение количества точек подсоединения проводов.
    • В случае срабатывания размыкаются одновременно все питающие проводники (ноль и фаза).

    В то же время у данных устройств есть и недостатки:

    • Более высокая стоимость.
    • Затруднение диагностики причины срабатывания.
    • При повреждении меняется полностью вне зависимости от того, какой тип защиты отказал.

    Таким образом, если при отдельно установленных автоматах и УЗО можно легко определить, чем вызвано срабатывание (коротким замыканием или током утечки) и при необходимости заменить необходимое устройство, то дифференциальный автомат меняется целиком. Причем для поиска причин необходимы некоторые навыки.

    Область применения

    Дифавтомат, как и УЗО, наилучшим образом раскрывает достоинства при установке в цепях, которые нуждаются в особом контроле. Это мощная нагрузка, расположенная в помещениях с высокой опасностью, наличие чувствительной к параметрам питающей сети аппаратуры.

    К опасным помещениям относятся те, которые имеют высокую влажность и наличие электроаппаратуры. Например, ванная комната с электрическим бойлером или стиральной машинкой, кухня с электроплитой.

    Где лучше установить дифавтомат вместо УЗО

    Учитывая то, что дифференциальный автомат занимает меньше места, чем совместно устанавливаемые токовые автоматы и УЗО, то они наиболее удобны при размещении в малогабаритных распределительных щитах. Также удобно использовать дифавтоматы в щитах, распределяющим питание на большое количество цепей, поскольку так можно значительно упростить нагрузку. Одновременно возрастает надежность, так как в распределительных щитах слабым метом являются точки коммутации – клеммы устройств с подсоединенными проводами.

    Параметры

    При установке дифавтомата следует учитывать три основных параметра:

    • Напряжение питающей сети и количество фаз – 220В или 380В, 1 фаза или 3.
    • Ток срабатывания. Данный параметр аналогичен таковому у автомата защиты.
    • Ток утечки. Здесь все аналогично УЗО.

    Есть еще несколько параметров, с которым знакомы не все:

    • Номинальная отключающая способность. Ток короткого замыкания, который способно выдержать устройство без нарушения работоспособности.
    • Время срабатывания дифференциальной защиты.
    • Класс токоограничения. Показывает время гашения электрической дуги при коротком замыкании.
    • Тип электромагнитного расцепителя, от которого зависит превышение тока срабатывания по сравнению с номинальным.

    Тип электромагнитного расцепителя

    Электромагнитный расцепитель в дифавтомате предназначен для мгновенного размыкания цепи при превышении номинального тока в указанное количество раз. Распространены следующие типы:

    • В – ток срабатывания превышает номинальный в 3-5 раз.
    • С – ток срабатывания превышает номинальный в 5-10 раз.
    • D – ток срабатывания превышает номинальный в 10-20 раз.

    Ток утечки (отключающий дифференциальный ток) и его класс

    Порог чувствительности дифференциального трансформатора определяет ток утечки, который вызывает срабатывание защиты. Наибольшее распространение получили дифференциальные трансформаторы с чувствительностью 10 и 30 мА.

    Кроме числового значения тока утечки, важное значение имеет форма. В соответствии с этим различают такие классы устройств защиты:

    • АС – контролируется синусоидальный ток утечки.
    • А – кроме синусоидального, учитывается пульсирующий постоянный, что важно при защите цифрового электронного оборудования.
    • В – к перечисленным токам добавляется сглаженный постоянный.
    • S – выдержка времени на отключение – 200-300 мс.
    • G – выдержка времени – 60-80 мс.

    Номинальная отключающая способность и класс токоограничения

    Данный параметр характеризует ток короткого замыкания, который в состоянии выдержать контактная группа автомата защиты без повреждения в течении времени отключения. Чем выше значение параметра, тем больше вероятность того, что после устранения повреждения в сети дифавтомат останется работоспособным. Типовой ряд значений таков:

    • 3000 А;
    • 4500 А – вместе с первым значением сегодня практически не используется;
    • 6000 А – часто используемое значение;
    • 10000 А – подходит к местам с близким расположением к питающей подстанции, но имеет высокую стоимость.

    Класс токоограничения характеризует скорость отключения при протекании критического тока. Время выключения (скорость) включает время гашения дуги между размыкающими контактами. Меньшее время, то есть более высокая скорость выключения, гарантирует большую безопасность. Существует три класса: с первого по третий.

    Электронный или электромеханический

    По внутреннему оснащению различают электромеханические и электронные устройства. Электромеханические дифавтоматы считаются более надежными и не требуют для работы внешнего питания.

    Электронные устройства имеют более стабильные параметры, но для нормальной работы требуется наличие стабильного питания на входе.

    Принцип работы селективного типа

    В разветвленных электрических сетях применяется двухуровневая система защиты.

    На первом уровне устанавливается дифференциальный автомат, который контролирует линию нагрузки полностью. На втором – дифавтоматы контролируют каждую выделенную цепь по отдельности.

    Чтобы предотвратить одновременное срабатывание устройств защиты обоих уровней, первый дифавтомат должен обладать селективностью, которая определяется временем задержки на отключение. Для этих целей используют автоматы классов S или G.

    Особенности выбора для квартиры или дома

    Параметры автоматов во многом зависят от характеристик электропроводки и устанавливаемого оборудования. Часто ставят защиту с током утечки 30 мА, поскольку более чувствительные устройства могут выдавать ложные срабатывания при изношенной электропроводке и при большом количестве подключенных приборов.

    Тап электромагнитного расцепителя определяется параметрами подключаемой нагрузки.

    По току срабатывания руководствуются теми же условиями, что и при выборе автоматов защиты.

    Условия эксплуатации

    Установка дифференциальных автоматов производится как с использованием заземления, так и без него.

    Ошибки при покупке

    Главная ошибка при покупке дифавтомата – стремление обезопасить себя. В связи с чем потребители выбирают устройства с минимальным током защиты и перегрузки. В результате наблюдаются многочисленные ложные срабатывания.

    Превышение тока отключения не гарантирует надежное отключение при высоких токах нагрузки.

    Грамотный подбор параметров автоматики защиты обычно выполняют специалисты, которые также дают рекомендации по распределению электрических цепей и монтажу силового щита. Отсутствие должной квалификации не гарантирует нормальной защиты потребителей от нештатных ситуаций.

    Полезное видео

    Ссылка на основную публикацию