Что такое светодиод и как он работает — устройство и особенности

Как устроены и работают светодиоды

Излучающие свет полупроводниковые приборы широко используются для работы систем освещения и в качестве индикаторов электрического тока. Они относятся к электронным устройствам, работающим под действием приложенного напряжения.

Поскольку его величина незначительная, то подобные источники относятся к низковольтным приборам, обладают повышенной степенью безопасности по воздействию электрического тока на организм человека. Риски получения травм возрастают тогда, когда для их свечения используются источники повышенного напряжения, например, бытовой домашней сети, требующие включения в схему специальных блоков питания.

Отличительной чертой конструкции светодиода является более высокая механическая прочность корпуса, чем у ламп «Ильича» и люминесцентных. При правильной эксплуатации они работают долго и надежно. Их ресурс в 100 раз превышает показатели нитей накаливания, достигает ста тысяч часов.

Однако, этот показатель характерен для индикаторных конструкций. У мощных источников для освещения применяются повышенные токи, а срок эксплуатации снижается в 2÷5 раз.

Устройство светодиода

Обычный индикаторный светодиод изготавливают в эпоксидном корпусе с диаметром 5 мм и двумя контактными выводами для подключения к цепям электрического тока: анодом и катодом. Визуально они отличаются по длине. У нового прибора без обрезанных контактов катод короче.

Запомнить это положение помогает простое правило: с буквы «К» начинаются оба слова:

Когда же ножки светодиода обрезаны, то анод можно определить подачей на контакты напряжения 1,5 вольта от простой пальчиковой батарейки: свет появляется при совпадении полярностей.

Светоизлучающий активный монокристалл полупроводника имеет вид прямоугольного параллелепипеда. Он размещён около светоотражающего рефлектора параболической формы из алюминиевого сплава и смонтирован на подложке с нетокопроводящими свойствами.

На окончании светового прозрачного корпуса из полимерных материалов расположена линза, фокусирующая световые лучи. Она совместно с рефлектором образует оптическую систему, формирующую угол потока излучения. Его характеризуют диаграммой направленности светодиода.

Она характеризует отклонение света от геометрической оси общей конструкции в стороны, что приводит к увеличению рассеивания. Такое явление возникает из-за появления при производстве небольших нарушений технологии, а также старения оптических материалов во время эксплуатации и некоторых других факторов.

Внизу корпуса может быть расположен алюминиевый или латунный поясок, служащий радиатором для отвода тепла, выделяемого при прохождении электрического тока.

Этот принцип конструкции широко распространен. На его основе создают и другие полупроводниковые источники света, использующие иные формы структурных элементов.

Принципы излучения света

Полупроводниковый переход p-n типа подключают к источнику постоянного напряжения в соответствии с полярностью выводов.

Внутри контактного слоя веществ p- и n-типов под его действием начинается движение свободных отрицательно заряженных электронов и дырок, которые обладают положительным знаком заряда. Эти частицы направляются к притягивающим их полюсам.

В переходном слое заряды рекомбинируют. Электроны проходят из зоны проводимости в валентную, преодолевая уровень Ферми.

За счет этого часть их энергии освобождается с выделением световых волн различного спектра и яркости. Частота волны и цветопередача зависят от вида смешанных материалов, из которых сделан p-n переход.

Для излучения света внутри активной зоны полупроводника требуется соблюсти два условия:

1. пространство запрещенной зоны по ширине в активной области должно быть близко к энергии излучаемых квантов внутри видимого человеческому глазу диапазона частот;

2. чистоту материалов полупроводникового кристалла необходимо обеспечивать высокую, а количество дефектов, влияющих на процесс рекомбинации — минимально возможным.

Эта сложная техническая задача решается несколькими путями. Один из них — создание нескольких слоев p-n переходов, когда образуется сложная гетероструктура.

Влияние температуры

При увеличении уровня напряжения источника сила тока через полупроводниковый слой возрастает и свечение увеличивается: в зону рекомбинации поступает повышенное количество зарядов за единицу времени. Одновременно происходит нагрев токоведущих элементов. Его величина критична для материала внутренних тоководов и вещества p-n перехода. Излишняя температура способна их повредить, разрушить.

Внутри светодиодов энергия электрического тока переходит в световую непосредственно, без излишних процессов: не так, как у ламп с нитями накаливания. При этом образуются минимальные потери полезной мощности, обусловленные низким нагреванием токопроводящих элементов.

За счет этого создается высокая экономичность этих источников. Но, их можно применять только там, где сама конструкция защищена, блокирована от внешнего нагрева.

Особенности световых эффектов

При рекомбинации дырок и электронов в разных составах веществ p-n перехода создается неодинаковое излучение света. Его принято характеризовать параметром квантового выхода — количеством выделенных световых квантов для единичной рекомбинированной пары зарядов.

Он формируется и происходит на двух уровнях светодиода:

1. внутри самого полупроводникового перехода — внутренний;

2. в конструкции всего светодиода в целом — внешний.

На первом уровне квантовый выход у правильно выполненных монокристаллов может достигать величины, близкой к 100%. Но, для обеспечения этого показателя требуется создавать большие токи и мощный отвод тепла.

Внутри самого источника на втором уровне часть света рассеивается и поглощается элементами конструкции, чем снижает общую эффективность излучения. Максимальное значение квантового выхода здесь намного меньше. У светодиодов, испускающих красный спектр, оно достигает не более 55%, а у синих снижается еще больше — до 35%.

Виды цветовой передачи света

Современные светодиоды излучают:

Желто-зеленый, желтый и красный спектр

В основе p-n перехода используются фосфиды и арсениды галлия. Эта технология была реализована в конце 60-х годов для индикаторов электронных приборов и панелей управления транспортной техники, рекламных щитов.

Такие устройства по светоотдаче сразу обогнали основные источники света того времени — лампы накаливания и превзошли их по надежности, ресурсу и безопасности.

Голубой спектр

Излучатели синего, сине-зеленого и особенно белого спектров долго не поддавались практической реализации из-за трудностей комплексного решения двух технических задач:

1. ограниченных размеров запрещенной зоны, в которой осуществляется рекомбинация;

2. высоких требований к содержанию примесей.

Для каждой ступени повышения яркости синего спектра требовалось увеличение энергии квантов за счет расширения ширины запретной зоны.

Вопрос удалось разрешить включением в вещество полупроводника карбидов кремния SiC или нитридов. Но, у разработок первой группы оказался слишком низкий КПД и маленький выход излучения квантов для одной рекомбинированной пары зарядов.

Повысить квантовый выход помогло включение в полупроводниковый переход твердых растворов на основе селенида цинка. Но, такие светодиоды обладали повышенным электрическим сопротивлением на переходе. За счет этого они перегревались и быстро перегорали, а сложные в изготовлении конструкции отвода тепла для них эффективно не работали.

Впервые светодиод голубого свечения удалось создать при использовании тонких пленок из нитрида галлия, наносимых на сапфировую подложку.

Белый спектр

Для его получения используют одну из трех разработанных технологий:

1. смешивание цветов по методике RGB;

2. нанесение трех слоев из красного, зеленого и голубого люминофора на светодиод ультрафиолетового диапазона;

3. покрытие голубого светодиода слоями желто-зеленого и зелено-красного люминофора.

При первом способе на единой матрице размещают сразу три монокристалла, каждый из которых излучает свой спектр RGB. За счет конструкции оптической системы на основе линзы эти цвета смешивают и получают на выходе суммарный белый оттенок.

У альтернативного метода смешение цветов происходит за счет последовательного облучения ультрафиолетовым излучением трех составляющих слоев люминофора.

Особенности технологий белого спектра

Методика RGB

задействовать в алгоритме управления освещением различные комбинации монокристаллов, подключая их поочередно вручную или автоматизированной программой;

вызывать различные цветовые оттенки, меняющиеся по времени;

создавать эффектные осветительные комплексы для рекламы.

Простым примером такой реализации служат цветовые елочные гирлянды. Подобные алгоритмы также широко используют дизайнеры.

Недостатками светодиодов RGB конструкции являются:

неоднородный цвет светового пятна по центру и краям;

неравномерный нагрев и отвод тепла с поверхности матрицы, ведущий к разным скоростям старения p-n переходов, влияющий на балансировку цветов, изменению суммарного качества белого спектра.

Эти недостатки вызваны разным расположением монокристаллов на базовой поверхности. Они сложно устраняются и настраиваются. За счет подобной технологии RGB модели относятся к наиболее сложным и дорогим разработкам.

Светодиоды с люминофором

Они проще в конструкции, дешевле в производстве, экономичнее при пересчетах на излучение единицы светового потока.

Для них характерны недостатки:

в слое люминофора происходят потери световой энергии, которые понижают светоотдачу;

сложность технологии нанесения равномерного слоя люминофора влияет на качество цветовой температуры;

люминофор обладает меньшим ресурсом, чем сам светодиод и быстрее стареет при эксплуатации.

Особенности светодиодов разных конструкций

Модели с люминофором и RGB-изделия создаются для разного промышленного и бытового применения.

Способы питания

Индикаторный светодиод первых массовых выпусков потреблял около 15 мА при питании от чуть меньшей величины, чем два вольта постоянного напряжения. Современные изделия имеют повышенные характеристики: до четырех вольт и 50 мА.

Светодиоды для освещения питаются таким же напряжением, но потребляют уже несколько сотен миллиампер. Производители сейчас активно разрабатывают и проектируют устройства до 1 А.

С целью повышения эффективности светоотдачи создаются светодиодные модули, которые могут использовать последовательную подачу напряжения на каждый элемент. В таком случае его величина возрастает до 12 либо 24 вольт.

При подаче напряжения на светодиод требуется учитывать полярность. Когда она нарушена, то ток не проходит и свечения не будет. Если же используется переменный синусоидальный сигнал, то свечение происходит только при прохождении положительной полуволны. Причем его сила так же пропорционально меняется по закону появления соответствующей величины тока с полярным направлением.

Следует учитывать, что при обратном напряжении возможен пробой полупроводникового перехода. Он происходит при превышении 5 вольт на одном монокристалле.

Способы управления

Для регулировки яркости излучаемого света применяют один из двух методов управления:

1. величиной подключаемого напряжения;

Первый способ простой, но неэффективный. При снижении уровня напряжения ниже определённого порога светодиод может просто потухнуть.

Метод же ШИМ исключает подобное явление, но он значительно сложнее в технической реализации. Ток, пропускаемый через полупроводниковый переход монокристалла, подается не постоянной формой, а импульсной высокой частоты со значением от нескольких сотен до тысячи герц.

За счет изменения ширины импульсов и пауз между ними (процесс называют модуляцией) осуществляется регулировка яркости свечения в широких пределах. Формированием этих токов через монокристаллы занимаются специальные программируемые управляющие блоки со сложными алгоритмами.

Спектр излучения

Частота выходящего из светодиода излучения лежит в очень узкой области. Ее называют монохроматической. Она кардинальным образом отличается от спектра волн, исходящего от Солнца или нитей накаливания обычных осветительных ламп.

О влиянии такого освещения на человеческий глаз ведется много дискуссий. Однако, результаты серьезных научных анализов этого вопроса нам неизвестны.

Производство

При изготовлении светодиодов используется только автоматическая линия, в которой работают станки-роботы по заранее спроектированной технологии.

Физический ручной труд человека полностью исключен из производственного процесса.

Подготовленные специалисты осуществляют только контроль за правильным протеканием технологии.

Анализ качества выпускаемой продукции тоже входит в их обязанности.

Поделитесь этой статьей с друзьями:

Вступайте в наши группы в социальных сетях:

Что такое светодиод (LED), типы, как работает, история, схема и характеристики

В статье узнаете что такое светодиод (LED), типы, как работает, история, схема и характеристики, преимущества и недостатки.

Светодиоды повсюду вокруг нас: в наших телефонах, наших автомобилях и даже в наших домах. Каждый раз, когда горит что-то электронное, есть большая вероятность, что за ним стоит светодиод. Они бывают самых разных размеров, форм и цветов, но независимо от того, как они выглядят, у них есть одна общая черта это самая популярная вещь в электроники. Огромный выбор светодиодов на ваш вкус и цвет вы можете приобрести на Алиэкспресс, нажав на кнопку ниже:

Светодиоды («LED») — это особый тип диодов, которые преобразуют электрическую энергию в свет. На самом деле, светодиод означает «светоизлучающий диод». И можно увидеть сходство на схеме диода и светодиода:

Короче говоря, светодиоды похожи на крошечные лампочки. Тем не менее, для сравнения светодиоды требуют гораздо меньше энергии. Они также более энергоэффективны, поэтому они не имеют тенденцию нагреваться, как обычные лампочки. Это делает их идеальным устройством для мобильных телефонов и других электронных приборов с низким энергопотреблением. Светодиоды высокой интенсивности нашли свое применение в акцентном освещении, прожекторах и даже автомобильных фарах!

Кто изобрел светодиод

Общая светодиодная технология существует уже более сорока лет. Первый светоизлучающий диод видимого спектра был изобретен в 1962 году Ником Холоняком-младшим, который в то время работал консультантом в General Electric.

Однако некоторые факторы не позволили технологии перейти к практическому использованию освещения. Стоимость была главной проблемой, первые светодиоды стоили более 200 долларов за диод. Другим ограничивающим фактором был цвет, до 70-х годов единственным цветом, который мог создавать светодиод, был красный. Еще одним фактором был световой поток, который в течение ряда лет ограничивал практическое использование светодиодов для визуальных сигналов, таких как световые индикаторы и знаки.

Использование светодиодов в лампочках является довольно недавним и продолжающимся развитием. Первые массовые установки светодиодного освещения произошли всего за последние несколько лет, и технология постоянно совершенствуется.

Характеристики светодиода (LED)

Перед подключением светодиода нужно знать несколько характеристик светодиода (на самом деле, они очень важны). Если вы обращаетесь к какой-либо спецификации, предоставленной производителем, вы можете найти множество технических характеристик, соответствующих электрическим характеристикам, номинальным характеристикам, физическим размерам и так далее.

Я не буду утомлять вас всеми характеристиками, а только важными. Это полярность, прямое напряжение и прямой ток.

Советуем вам видео ниже «Как узнать параметры любого светодиода»

Полярность LED

Полярность является показателем симметричности электронного компонента. Светоизлучающий диод, подобный диоду PN-перехода, не является симметричным, то есть он позволяет току течь только в одном направлении.

Читайте также:  Предназначение и технические характеристики диэлектрической отвертки

В светодиоде положительный вывод называется анодом, а отрицательный вывод — катодом. Для правильной работы светодиода анод светодиода должен иметь более высокий потенциал, чем катод, так как ток в светодиоде течет от анода к катоду.

Что произойдет, если мы подключим светодиод в обратном направлении? Ну, ничего не происходит, так как светодиод не будет проводить ток. Вы можете легко идентифицировать анодную клемму светодиода, поскольку они обычно имеют более длинные выводы.

Прямой ток светодиодов

Светодиоды являются очень чувствительными устройствами, и величина тока, протекающего через светодиод, очень важна. Кроме того, яркость светодиода зависит от величины тока, потребляемого светодиодом.

Каждый светодиод имеет максимальный прямой ток, который может безопасно проходить через него, не перегорая. Да, допустимый ток, превышающий номинальный ток, фактически подожжет светодиод.

Например, наиболее часто используемые 5-миллиметровые светодиоды имеют номинальный ток от 20 мА до 30 мА, а 8-миллиметровые светодиоды имеют номинальный ток 150 мА (точные значения приведены в техническом описании).

Как нам регулировать ток, протекающий через светодиод? Для контроля тока, протекающего через светодиод, мы используем резисторы с ограничением тока.

Прямое напряжение LED

Светоизлучающие диоды также рассчитаны на максимальное напряжение, то есть количество напряжения, которое необходимо для светодиода. Например, все 5-миллиметровые светодиоды имеют номинальный ток 20 мА, но прямое напряжение меняется от одного светодиода к другому.

Максимальное напряжение на красных светодиодах составляет 2,2 В, максимальное напряжение на синих светодиодах — 3,4 В, а на максимальном напряжении белых светодиодов — 3,6 В.

Как работает светодиод

Светодиод является двухпроводным полупроводниковым источником света. Это p-n переходной диод, который излучает свет при активации. Когда к выводам приложено подходящее напряжение, электроны могут рекомбинировать с электронными отверстиями внутри устройства, выделяя энергию в виде фотонов. Этот эффект называется электролюминесценцией, а цвет света (соответствующий энергии фотона) определяется энергетической шириной запрещенной зоны полупроводника.

Материал, используемый в светодиодах, в основном алюминий-галлий-арсенид (AlGaAs). В своем первоначальном состоянии атомы этого материала прочно связаны. Без свободных электронов проводимость электричества здесь становится невозможной.

При добавлении примеси, которая известна как легирование, вводятся дополнительные атомы, что эффективно нарушает баланс материала.

Эти примеси в виде дополнительных атомов способны либо обеспечивать свободные электроны (N-тип) в системе, либо высасывать некоторые из уже существующих электронов из атомов (P-тип), создавая «дыры» на атомных орбитах. В обоих случаях материал становится более проводящим. Таким образом, под воздействием электрического тока в материале N-типа электроны могут перемещаться от анода (положительный) к катоду (отрицательный) и наоборот в материале P-типа. Из-за свойства полупроводника ток никогда не будет идти в противоположных направлениях в соответствующих случаях.

Из приведенного выше объяснения ясно, что интенсивность света, излучаемого источником (в данном случае светодиодом), будет зависеть от уровня энергии испускаемых фотонов, который, в свою очередь, будет зависеть от энергии, выделяемой электронами, прыгающими между атомными орбитами из полупроводникового материала.

Мы знаем, что для того, чтобы заставить электрон выстрелить с более низкой орбиты на более высокую, его энергетический уровень необходимо поднять. И наоборот, если электроны вынуждены падать с более высоких на более низкие орбитали, логически энергия должна высвобождаться в процессе.

В светодиодах вышеуказанные явления хорошо используются. В ответ на P-тип легирования электроны в светодиодах движутся, падая с верхних орбиталей на нижние, высвобождая энергию в виде фотонов, то есть света. Чем дальше эти орбитали отстоят друг от друга, тем больше интенсивность излучаемого света.

Различные длины волн, вовлеченные в процесс, определяют различные цвета, производимые светодиодами. Следовательно, свет, излучаемый устройством, зависит от типа используемого полупроводникового материала.
Инфракрасный свет создается с использованием арсенида галлия (GaAs) в качестве полупроводника. Красный или желтый свет получают с использованием галлия-арсенида-фосфора (GaAsP) в качестве полупроводника. Красный или зеленый свет получается при использовании галлия-фосфора (GaP) в качестве полупроводника.

Простая светодиодная схема

На следующем рисунке показана схема простой светодиодной цепи, состоящей из 5-миллиметрового белого светодиода с источником питания 5 В.

Поскольку это белый светодиод, номинальные значения тока и напряжения следующие: типичный прямой ток составляет 20 мА, а типовое прямое напряжение составляет 2 В.

Поэтому для регулирования тока и напряжения мы использовали резистор 180 Ом.

Типы светодиодов

  • Сквозные светодиоды: они доступны в различных формах и размерах, и наиболее распространенными являются светодиоды 3 мм, 5 мм и 8 мм. Эти светодиоды доступны в различных цветах, таких как красный, синий, желтый, зеленый, белый и т. Д.
  • Светодиоды SMD (светодиоды для поверхностного монтажа): Светодиоды для поверхностного монтажа представляют собой специальную упаковку, которую можно легко установить на печатную плату. Светодиоды SMD обычно различаются в зависимости от их физических размеров. Например, наиболее распространенными светодиодами SMD являются 3528 и 5050.

  • Двухцветные светодиоды. Следующим типом светодиодов являются двухцветные светодиоды, как следует из названия, могут излучать два цвета. Двухцветные светодиоды имеют три контакта, обычно два анода и общий катод. В зависимости от конфигурации проводов, цвет будет активирован.

  • Светодиод RGB (красный — синий — зеленый): светодиоды RGB являются самыми любимыми и популярными среди любителей и дизайнеров. Даже компьютерные сборки очень популярны для реализации светодиодов RGB в корпусах компьютеров, материнских платах, оперативной памяти и так далее.

  • Светодиоды высокой мощности: Светодиод с номинальной мощностью, превышающей или равной 1 Вт, называется светодиодом высокой мощности. Это потому, что нормальные светодиоды имеют рассеиваемую мощность в несколько милливатт. Мощные светодиоды очень яркие и часто используются в фонариках, автомобильных фарах, прожекторах и так далее.

Преимущества светодиодов

  1. Для управления светодиодом достаточно очень низкого напряжения и тока. В диапазоне voltage- от 1 до 2 вольт. Ток — от 5 до 20 миллиампер.
  2. Общая выходная мощность будет менее 150 милливатт.
  3. Время отклика очень меньше — всего около 10 наносекунд.
  4. Устройство не требует нагрева и разогрева.
  5. Миниатюрный по размеру и, следовательно, легкий.
  6. Имеют прочную конструкцию и поэтому могут противостоять ударам и вибрациям.
  7. Срок службы светодиода составляет более 20 лет.

Недостатки светодиодов:

  • Небольшое превышение напряжения или тока может повредить устройство.
  • Известно, что устройство имеет более широкую полосу пропускания по сравнению с лазером.
  • Температура зависит от выходной мощности излучения и длины волны.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Светодиоды. Виды и устройство. Работа и применение. Особенности

Светодиоды для человечества стали одним из наиболее распространенных источников света для промышленных и бытовых нужд. Этот полупроводниковый прибор имеет один электрический переход, он преобразует электроэнергию в энергию видимого светового излучения. Явление открыто Генри Джозефом Раундом в 1907 году. Первые эксперименты были поставлены советским физиком-экспериментатором О.В. Лосевым, которому в 1929 году удалось получить рабочий прототип современного светодиода.

Первые современные светодиоды (СД, СИД, LED) были созданы в начале шестидесятых годов. У них было слабое красное свечение, их применяли в качестве индикаторов включения в самых разных приборах. В 90-х появились синие, желтые, зеленые и белые светодиоды. Их стали выпускать в промышленных масштабах многие компании. Сегодня LED-диоды применяются повсеместно: в светофорах, лампочках, автомобилях и так далее.

Устройство

Светодиод представляет полупроводниковый прибор с электронно-дырочным переходом, который создает оптическое излучение при прохождении через него тока в прямом направлении.

Стандартный индикаторный светодиод выполнен из следующих частей:

1 — Эпоксидная линза
2 — Проволочный контакт
3 — Отражатель
4 — Полупроводник (Определяет цвет свечения)
5 и 6 — Электроды
7 — Плоский срез

В основании светодиода закрепляются катод и анод. Все устройство сверху герметично закрыто линзой. На катоде установлен кристалл. На контактах имеются проводники, которые подсоединены к кристаллу p-n-переходом (проволока соединения для объединения двух проводников с различными типами проводимости). Для создания стабильной работы светодиода применяется теплоотвод, который необходим для осветительных приборов. В индикаторных приборах тепло не имеет решающего значения.

DIP-диоды имеют выводы, которые монтируются в отверстия печатной платы, они при помощи пайки подсоединяются на электрический контакт. Имеются модели с несколькими кристаллами различного цвета в одном корпусе.

SMD-светодиоды сегодня являются наиболее востребованными источниками света любых форматов.

  • Основа корпуса, куда крепится кристалл, является отличным проводником тепла. Благодаря этому в разы улучшился отвод тепла от кристалла.
  • В структуре белых светодиодов между линзой и полупроводником имеется слой люминофора, который нейтрализует ультрафиолет и задает необходимую цветовую температуру.
  • В SMD-компонентах, имеющих широкий угол излучения, линза отсутствует. При этом сам светодиод выделяется формой параллелепипеда.
Chip-On-Board (COB) представляют новейшее практическое достижение, которое должно занять в искусственном освещении лидерство в создании белых светодиодов.

Устройство светодиодов по технологии COB предполагает следующее:
  • На алюминиевую основу посредством диэлектрического клея крепят десятки кристаллов без подложки и корпуса.
  • Полученная матрица покрывается общим слоем люминофора. В итоге получается источник света, который имеет равномерное распределение светового потока без возможности появления теней.

Разновидностью Chip-On-Board является Chip-On-Glass (COG) технология, предусматривающая размещение на поверхности из стекла множества мелких кристаллов. К примеру, это филаментные лампы, где излучающим элементом является стеклянный стержень со светодиодами, которые покрыты люминофором.

Принцип действия
Несмотря на технологические особенности и разновидности, работа всех светодиодов основывается на общем принципе функционирования излучающего элемента:
  • Преобразование электроэнергии в световой поток осуществляется в кристалле, который выполнен из полупроводников с самым разным типом проводимости.
  • Материал с n­-проводимостью обеспечивают путем легирования его электронами, а материал с p-проводимостью при помощи дырок. В результате в сопредельных слоях появляются дополнительные носители заряда разной направленности.
  • При подаче прямого напряжения стартует движение электронов, а также дырок к p-n-переходу.
  • Заряженные частицы проходят барьер и начинают рекомбинировать, вследствие этого протекает электрический ток.
  • Процесс рекомбинации электрона и дырки в зоне p-n-перехода идет выделением энергии в качестве фотона.

В целом, указанное физическое явление свойственно всем полупроводниковым диодам. Однако длина волны фотона в большинстве случаев располагается за пределами видимого спектра излучения. Чтобы элементарная частица двигалась в диапазоне 400-700 нм, ученые проводили множество опытов и экспериментов с разными химическими элементами. В итоге появились новые соединения: фосфид галлия, арсенид галлия и более сложные формы. У каждой из них своя длина волны, то есть свой цвет излучения.
К тому же, кроме полезного света, который испускает светодиод, на p-n-переходе образуется некоторое количество теплоты, которое уменьшает эффективность полупроводникового прибора. Именно поэтому в конструкции мощных светодиодов предусматривается эффективный отвод тепла.

Разновидности

На текущий момент LED-диоды могут быть следующих видов:
  • Осветительные, то есть с большой мощностью. Их уровень освещенности равен вольфрамовым и люминесцентным источникам света.
  • Индикаторные – с небольшой мощностью, их применяют для подсветки в приборах.

Индикаторные LED-диоды по типу соединения делятся на:
  • Двойные GaP (галлий, фосфор) – имеют зеленый и оранжевый свет в структуре видимого спектра.
  • Тройные AIGaAs (алюминий, мышьяк, галлий) – имеют желтый и оранжевый свет в структуре видимого спектра.
  • Тройные GaAsP (мышьяк, галлий, фосфор) – имеют красный и желто-зеленый свет в структуре видимого спектра.
По типу корпуса светодиодные элементы могут быть:
  • DIP — устаревшая модель низкой мощности, их применяют для подсветки световых табло и игрушек.
  • «пиранья» или Superflux – аналоги DIP, но с четырьмя контактами. Они применяются для подсветки в автомобилях, меньше нагреваются и лучше крепятся.
  • SMD – самый распространенный тип, применяются во множестве источников света.
  • COB – это усовершенствованные светодиоды SMD.
Применение
Область применений светодиодов условно можно разделить на две широкие категории:
  1. Освещение.
  2. С использованием прямого света.

Светодиод в освещении применяется для освещения объекта, пространства или поверхности, вместо того, чтобы быть непосредственно видимым. Это интерьерная подсветка, фонарики, освещение фасадов зданий, освещение в автомобилях, подсветка клавиш мобильных телефонов и дисплеев и так далее. Широкое применение LED-диоды находят в коммуникаторах и сотовых телефонах.

Прямой светодиодный свет применяется для передачи информации, к примеру, в полноцветных видео дисплеях, в которых LED-диоды формируют пиксели дисплея, а также в алфавитно-цифровых табло. Прямой свет также применяется сигнальных устройствах. К примеру, это индикаторы поворота и стоп-сигналы автомобилей, светофоры и знаки.

Будущее светодиодов

Ученые создают светодиоды нового поколения, к примеру, на основе нано-кристаллических тонких пленок из перовскита. Они дешевые, эффективные и долговечные. Исследователи надеются, что такие LED-диоды будут применяться вместо обычных экранов ноутбуков и смартфонов, в том числе в бытовом и уличном освещении.

Создаются и волоконные LED-диоды, которые предназначены для создания носимых дисплеев. Ученые считают, что создаваемый метод производства волоконных светодиодов позволит наладить массовый выпуск и сделать интеграцию носимой электроники в одежду и текстиль совершенно недорогой.

Типичные характеристики

Светодиоды характеризуются следующими параметрами:

  • Цветовая характеристика.
  • Длина волны.
  • Сила тока.
  • Напряжение (тип применяемого напряжения).
  • Яркость (интенсивность светового потока).

Светодиодная яркость пропорциональна протекающему через него току, то есть чем напряжение будет выше, тем будет больше яркость. Единицей силы света служит люмен на стерадиан, она также измеряется в милликанделах. Бывают яркие (20-50 мкд.), а также сверх яркие (20000 мкд. и более) LED-диоды белого свечения.

Величина падения напряжения – характеристика допустимых значений прямого и обратного включений. Если подача напряжений выше этих значений, то наблюдается электрический пробой.

Сила тока определяет яркость свечения. Сила тока осветительных элементов обычно равняется 20 мА, для индикаторных светодиодов она составляет 20-40 мА.

Читайте также:  Способы освещения лестниц — светильники и датчики

Цвет излучения светодиода зависит от активных веществ, внесенных в полупроводниковый материал.

Длина волны света определяется разностью энергий при переходе электронов на этапе рекомбинации. Она определяется легирующими примесями и исходным полупроводниковым материалом.

Особенности, назначение, устройство и принцип работы диода

Диод — это электронный элемент, который обладает различной проводимостью. Он изготовлен на полупроводниковой основе и предназначен для выполнения разнообразных действий с поступающими электрическими сигналами. Применяется это приспособление не только в промышленности, электронике, но и в повседневной жизни. Большинство современного оборудования имеет в своём составе несколько таких элементов.

Общие сведения

Прежде чем рассматривать, как работает диод, необходимо подробно изучить его устройство, разновидности и узнать, зачем он применяется. Это поможет лучше понять принцип действия и выбрать максимально эффективное приспособление для определённого оборудования.

Устройство диода

Диод (от англ. diode) выглядит просто и имеет конструкцию, состоящую из небольшого количества элементов. Это позволяет мастерам не приобретать дорогостоящие изделия, а изготавливать их своими руками. Самодельные приспособления хоть и стоят намного дешевле, но выполняют те же функции, что и покупные.

Так как диоды часто изображаются на электросхемах, то определение их параметров считается довольно важным мероприятием. Обозначением для этих элементов служит комбинация символов VD1, VD2 и так далее.

Схема диода предусматривает наличие следующих элементов:

  1. Корпус. Он представляет собой стеклянный, керамический или металлический вакуумный баллон.
  2. Два электрода (катод и анод). Они располагаются внутри баллона и используются для обеспечения эмиссии электронов. Чаще всего применяются электроды косвенного накала, которые имеют цилиндрическую форму, и обладают специальным слоем, испускающим электроны. В некоторых старых конструкциях можно встретить эти элементы в виде тонкой нити, накаливающейся в процессе работы приспособления.
  3. Подогреватель. Он находится внутри катода и устроен в виде проволоки, которая накаливается из-за прохождения электрического тока.
  4. Диодный кристалл. Для изготовления этого элемента применяется германий или кремний. Одна его часть проводит электричество и имеет недостаточное количество электронов, а вторая — избыток.
  5. P-n переход — область между первой и второй частью диодного кристалла.

Принцип действия

Принцип работы диода довольно простой и разобраться в нём сможет не только профессионал, но и новичок. Для этого не нужно иметь специальное образование или навыки работы с таким приспособлением, а достаточно обладать общим представлением об устройстве.

Принцип действия диода:

  1. Электрический ток проходит через устройство и воздействует на катод диода.
  2. Из-за этого подогреватель постепенно накаляется, а электрод начинает испускать электроны.
  3. Следствием этого становится образование электрического поля между двумя электродами, которое является катализатором процесса притяжения электронов к аноду, обладающему положительным зарядом. Благодаря этому образуется эмиссионный ток.
  4. Пространственный отрицательный заряд, который появляется между двумя электродами, препятствует движению электронов к аноду. Из-за этого часть их меняет своё направление, и начинает двигаться к катоду.
  5. Попавшие на анод электроны образуют анодный ток, параметры которого соответствуют катодному.
  6. Если электрическое поле, возникшее между электродами, препятствует возвращению частиц на катод, то электродиод остаётся в запертом состоянии. Всё это приводит к размыканию цепи.

Разновидности приспособлений

Производители электронных элементов делают несколько типов диодов. Все они немного отличаются друг от друга, имеют различные свойства, а также используются для достижения определённых целей.

Диоды бывают:

  1. Выпрямительные. Это наиболее распространённый тип приспособлений, который используется в устройствах, способствующих преобразованию переменного тока промышленной частоты в постоянный.
  2. Высокочастотные. Большинство моделей современного оборудования функционируют при рабочей частоте в несколько гигагерц. В таких конструкциях применяются специальные диоды, рассчитанные на высокую частоту.
  3. Переключающие. Эти приспособления используются в тех схемах, где диод должен работать в различных режимах. В одном из них он оказывается смещённым в прямом направлении, а в другом — в обратном.
  4. Стабилитроны. Такие элементы применяются только в конструкциях, помогающих стабилизировать напряжение, поступающее к оборудованию.
  5. Варикапы. Они используются в параметрических усилителях и прочих подобных устройствах. С их помощью происходит коррекция частотной модуляции и автоматическая подстройка частоты.
  6. Диоды Шоттки. Назначение этого приспособления — малое падение напряжения при прямом включении. Область их применения ограничивается низковольтными электрическими цепями.
  7. Тиристоры (управляемые диоды). Они часто применяются в схемах, которые предназначены для плавного пуска двигателя, регулировки мощности или включения лампочки.
  8. Симисторы. Эта разновидность диодов используется для обеспечения работы систем, питающихся от переменного напряжения, так как способна пропускать электричество в обоих направлениях. Они представляют собой 2 тиристора, соединённые между собой.

Область применения

Диоды широко применяются по всему миру и входят в состав различных приспособлений. В большинстве случаев несколько таких элементов объединяются в общую конструкцию. Их количество выбирается исходя из типа и особенностей каждой схемы.

Использование диодов в электротехнике:

  1. Диодные мосты. В их составе может находиться от 4 до 12 диодов, которые последовательно соединены друг с другом. Они применяются для однофазных и трёхфазных схем, где выполняют функцию выпрямителей. В большинстве случаев такие диодные мосты устанавливаются на генераторах автомобилей. Благодаря им не только увеличивается надёжность устройства, но и уменьшаются его размеры.
  2. Диодные детекторы. Они представляют собой конструкцию, которая сочетает в себе не только несколько диодов, но и конденсаторы. Благодаря этому достигается способность выделять модуляцию с низкими частотами из соответствующих сигналов. Такие детекторы часто используются при изготовлении радиоприёмников и телевизоров.
  3. Диодная искрозащита. Для её создания применяются специальные диодные барьеры, которые ограничивают напряжение в имеющейся электрической цепи. Вместе с ними используются специальные токоограничительные резисторы, необходимые для контроля за величиной параметров проходящего электрического тока.
  4. Переключатели на основе диодов. Эти устройства дополняются конденсаторами и коммутируют высокочастотные сигналы. При этом контроль за работой осуществляется с помощью подачи управляющего сигнала, разделения высоких частот и применения постоянного тока.

Способы подключения

Существует несколько стандартных вариантов подключения диода в электрическую цепь. Все они используются в определённых схемах и позволяют достичь требуемого результата.

Прямой вариант

Этот способ включения диода в электрическую цепь называют наиболее простым и часто используемым. В его основе лежит подсоединение положительного полюса к области p-типа, а отрицательного — к n-типа.

Описание работы диода при прямом подключении:

  1. На устройство подаётся электрический ток, под воздействием которого образуется электрическое поле в области между двумя электродами. Его направление будет противоположным по отношению к внутреннему диффузионному полю.
  2. Затем происходит резкое сужение запирающего слоя, которое получается из-за значительного снижения напряжения электрического поля.
  3. Следствием этого станет способность большинства электронов свободно перемещаться из одной области (n-типа) в другую (p-типа).
  4. Во время этого процесса показатели дрейфового тока не изменятся, так как они зависят только от количества заряженных частиц, находящихся в области p-n перехода.
  5. Электроны способны перемещаться из n-области в p-область, что приводит к дисбалансу их концентрации. В одной из областей будет недостаток частиц, а в другой — избыток.
  6. Из-за этого часть электронов перемещается вглубь полупроводника, что становится причиной разрушения его электронейтральности.
  7. В этом случае полупроводник стремится к восстановлению своей нейтральности и начинает получать заряд от подключённого источника питания. Всё это приводит к образованию тока во внешней электроцепи.

Обратный метод

Этот способ подключения диода к общей схеме используется гораздо реже. В его основе лежит изменение полярности внешнего источника питания, который участвует в процессе передачи напряжения.

Особенности функционирования диода при обратном включении:

  1. После включения источника питания в области p-n перехода образуется электрическое поле. Его направление будет одинаковым с внутренним диффузионным полем.
  2. Из-за этого будет происходить расширение запирающего слоя.
  3. Находящееся в области p-n перехода поле будет ускорять движение электронов, но оставлять неизменными показатели дрейфующего тока.
  4. Из-за всех этих действий будет постепенно нарастать обратное напряжение, которое поспособствует стремлению электрического тока к максимальным значениям.

Возможные неисправности

Во время работы устройств с диодами могут возникать различные поломки. Это происходит из-за старения элементов или их амортизации.

Специалисты по ремонту различают 4 вида неисправностей.

Среди них такие:

  1. Электрический пробой. Это одна из наиболее распространённых поломок, которые встречаются у диодов. Она является обратимой, так как не приводит к разрушению диодного кристалла. Исправить её можно путём постепенного снижения подаваемого напряжения.
  2. Тепловой пробой. Такая неисправность более губительна для диода. Она возникает из-за плохого теплоотвода или перегрева в области p-n перехода. Последний образуется только в том случае, если устройство питается от тока с чрезмерно высокими показателями. Без проведения ремонтных мероприятий проблема только усугубится. При этом произойдёт рост колебания атомов диодного кристалла, что приведёт к его деформации и разрушению.
  3. Обрыв. При возникновении этой неисправности устройство прекращает пропуск электрического тока в обоих направлениях. Таким образом, он становится изолятором, блокирующим всю систему. Для устранения поломки нужно точно определить её местонахождение. Для этого следует применять специальные высокочувствительные тестеры, которые повысят шанс обнаружить обрыв.
  4. Утечка. Под этой поломкой понимают нарушение целостности корпуса, вызванного физическим или иным воздействием на прибор.

Диод — важный элемент конструкции, который обеспечивает исправную и бесперебойную работу устройства. При правильном выборе этого элемента и обеспечении оптимальных условий работы можно избежать каких-либо неисправностей.


Как работает светодиод: принцип работы, устройство и особенности

Многие потребители хотят больше узнать об устройстве светодиодов, принципе работы этих электрических приборов, а также их технологических особенностях. Это связано с популяризацией LED-освещения в целом. Такие элементы представляют собой полупроводниковые изделия с электронно-дырочным переходом, позволяющим формировать оптическое излучение.

Как появилась специфическая светотехника?

Прежде чем рассмотреть принцип работы светодиодов, предлагается изучить информацию о том, каким образом они были созданы. Самое первое сообщение о возможности излучения света посредством твердотельного диода принадлежит одному британскому экспериментатору. Он сделал его еще в 1907 году, когда описал процесс электролюминесценции.

Эксперименты повторно проводились и в российской лаборатории, но тогда им не придали особого значения. В 1961 году первая светодиодная технология была запатентована сотрудниками американской компании. С тех пор процессы разработки совершенствовались. И через какое-то время удалось выпустить элемент высокой яркости для использования в телекоммуникационной сфере.

Об основных физических свойствах

Чтобы понять принцип работы светодиода, необходимо понимать, что каждый элемент – это полупроводниковый диод, преобразовывающий электроэнергию непосредственно в световое излучение. Когда по нему проходит прямой ток, осуществляется перенос электронов в конкретную область. В процессе перемещения происходит переход на другой энергетический уровень с выделением большого количества светового излучения.

Чтобы получить различные цветовые эффекты, в полупроводниковый материал внедряются активирующие вещества. Чаще всего применяется монохроматическое излучение. При таком варианте для каждого диода используется определенная длина волны. Цветовая гамма свечения может быть управляемой.

Наиболее важные особенности

Рассматривая подробное устройство и принцип работы светодиода, нельзя не отметить некоторые особенности. Излучение приборов находится в прямой зависимости от угла направленности, который зависит от конструкции. Определенное влияние на интенсивность излучения оказывают:

  • материал, применяющийся непосредственно для защиты кристалла;
  • установленная линза.

Полупроводниковый прибор способен выделять не только узконаправленный, но и рассеянный свет. Температурный режим внешней среды может оказывать влияние на свойства светодиодов. От него зависит их яркость. При повышении температуры свечение становится тусклее, а при понижении – ярче. В связи с этим сфера эксплуатации имеет особое значение.

Высокие требования предъявляются к продукции, предназначенной для наружного применения. Она должна исправно функционировать при значительных колебаниях температур. Яркость света в ходе эксплуатации не должна заметно изменяться. Современные решения позволяют обеспечить нормальное свечение, независимо от температуры окружающей среды.

Принцип работы светодиода основывается на высокой скорости действия. Излучение появляется в течение нескольких секунд после прямого воздействия электрического тока непосредственно на полупроводник. Изготавливаемые приборы могут иметь технологические отличия, от которых будет зависеть сфера применения.

Светодиоды типа DIP

Полупроводниковые элементы данной категории относятся к слаботочным изделиям, поэтому они в основном применяются для дополнительной подсветки. Обычно они устанавливаются в качестве индикаторов или основных источников в гирляндах. С появлением более совершенных технологий их производство существенно сократилось.

Принцип работы светодиода малой мощности сравнительно прост. В качестве основы выступает корпус, имеющий цилиндрическую форму. Он изготавливается из эпоксидной смолы. Во внутренней части находятся специальные выводы, вставленные в печатную плату. Закругленный цилиндр позволяет создать направленный световой поток.

Излучающий элемент в виде кристалла размещен на катоде, который напоминает небольшой флажок. Он при помощи сверхтонкого провода соединен с анодом. Встречаются изделия сразу с двумя или тремя кристаллами, имеющими разные цвета. При необходимости в корпус внедряется управляющий чип, необходимый для контроля над свечением.

Для наращивания уровня светового потока в таких светодиодах начали делать четыре вывода вместо двух. Однако при таком варианте нагрев кристалла значительно увеличился, что привело к ограничению возможной сферы применения.

Светодиоды типа SMD

Такие элементы имеют более широкое назначение, что связано с основными характеристиками. Принцип работы светодиодов данного типа позволяет организовывать освещение различных форматов. Полупроводниковые приборы с фиксированной печатной платой имеют компактные габариты, благодаря чему они могут использоваться даже в самых маленьких светильниках.

Базовая часть корпуса, на которую фиксируется кристалл, обладает высокой теплопроводностью, поэтому отвод тепла производится эффективно. Обычно между линзой и основным элементом укладывается слой люминофора, предоставляющий возможность нейтрализовать ультрафиолет, а также задать определенную цветовую температуру. В изделиях с рассеянным излучением линза не устанавливается. Сам элемент по форме напоминает параллелепипед.

Светодиоды типа COB

Подобные элементы начали использоваться для лампочек и фонарей с мощным светодиодом. Принцип работы изделий остается тем же, но к алюминиевой основе в данном случае крепятся десятки кристаллов при помощи диэлектрического клеевого состава. Полученная матрица обрабатывается одним слоем люминофора, в результате чего образуется световой источник с равномерным распределением основного потока.

Читайте также:  Правила установки розеток в стену по евростандарту

Одной из разновидностей технологии является вариант с распределением большого количества кристаллов по стеклянной поверхности. По этой схеме изготавливаются филаментные лампы, у которых в качестве базового источника выступает центральный стержень из стекла, покрытый мелкими светодиодами и обработанный люминофором.

Технология RGB

Принцип работы RGB-светодиода основывается на оптическом эффекте, позволяющем получить разнообразные цветовые оттенки в результате смешения трех основных компонентов палитры. На одной матрице установлены сразу три кристалла. Для адаптации к различным условиям существует несколько модификаций изделий. Они изготавливаются с общим катодом или анодом, а иногда и без таковых (с шестью основными выводами).

Чаще всего световая технология используется для оформления рекламных щитов, декорирования строений, обрамления мостов, памятников архитектуры и других конструкций. Принцип работы многоцветного светодиода идентичен. Однако конструктивные особенности увеличивают конечную стоимость изделий и усложняют схему подсоединения к электрической сети.

Основные технические характеристики

Существует несколько параметров, характеризующих светодиоды.

  1. Яркость выражается в единицах силы света. Она пропорциональна величине проходящего через полупроводниковый элемент электрического тока. С увеличением напряжения повышается уровень яркости.
  2. Сила тока может быть пульсирующей или постоянной. Она может колебаться в широком диапазоне. Индикаторные приборы могут иметь силу тока всего 20 мА, а одноваттные аналоги – 300-400 мА.
  3. Длина волны оказывает влияние на цветовую гамму. Ее измерения производятся в нанометрах. Границы волны сопоставляются с базовыми компонентами палитры необходимым образом.

Цветовая гамма испускаемого излучения меняется при введении в полупроводниковый материал химически активных веществ.

Принцип работы драйвера для светодиодов

Для получения стабилизированного тока применяется специальное устройство, которое выбирается с учетом следующих параметров:

  • определенной мощности;
  • напряжения непосредственно на выходе;
  • номинального тока.

Устанавливаемые драйверы могут быть линейными или импульсными. Первые из них призваны обеспечивать плавную стабилизацию электрического тока при изменчивом напряжении на входе. Импульсные приборы формируют в выходном канале высокочастотные толчки. Они отличаются высоким коэффициентом полезного действия.

Существуют еще диммируемые драйверы, предоставляющие возможность настраивать яркость свечения светодиодов. Днем интенсивность излучения можно несколько уменьшить, благодаря чему удастся экономить ресурс полупроводниковых изделий и электрическую энергию.

Интересующие вопросы

Теперь принцип работы светодиодов стал понятен, однако многие пользователи задают различные вопросы по этой теме.

  1. Какие параметры влияют на срок службы полупроводникового прибора? Есть утверждение, что светодиоды долговечны, но это не совсем так. При высокой силе тока в процессе эксплуатации увеличивается температура, поэтому более мощные устройства быстрее выходят из строя.
  2. Ухудшается ли цветовая передача светодиодов со временем? При длительной эксплуатации приборов происходит определенное изменение оттенка, но в настоящее время не существует каких-либо стандартов, позволяющих выразить это в количественном отношении.
  3. Не являются ли устройства вредными для человеческого глаза? Какие-либо сведения о негативном воздействии полупроводниковых элементов на данный момент времени отсутствуют.
  4. Почему необходимо стабилизировать электрический ток, проходящий через LED-устройство? Даже небольшие изменения напряжения способны привести к колебаниям яркости.
  5. Каким образом можно получить белый свет? Есть три основных варианта. Первый из них предполагает смешение компонентов палитры с применением технологии RGB. Второй вариант подразумевает нанесение три люминофора непосредственно на поверхность полупроводникового прибора, излучающего поток света в ультрафиолетовом диапазоне. В третьем способе люминофор наносится на голубой элемент.

В качестве заключения

В рамках статьи удалось подробно рассмотреть принцип работы светодиода. Для «чайников» (людей, не разбирающихся в современных технологиях LED) она станет, пожалуй, ценным пособием. В ней собрана наиболее полная информация, касающаяся устройства и функционирования современных осветительных систем, пользующихся высокой популярностью.

Светодиоды – как работает, полярность, расчет резистора

Светодиоды – одни из самых популярных электронных компонентов, использующиеся практически в любой схеме. Словосочетание “помигать светодиодами” часто используется для обозначений первой задачи при проверке жизнеспособности схемы. В этой статье мы узнаем, как работают светодиода, сделаем краткий обзор их видов, а также разберемся с такими практическими вопросами как определение полярности и расчет резистора.

Устройство светодиода

Светодиоды — полупроводниковые приборы с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Излучаемый светодиодом свет лежит в узком диапазоне спектра. Иными словами, его кристалл изначально излучает конкретный цвет (если речь идёт об СД видимого диапазона) — в отличие от лампы, излучающей более широкий спектр, где нужный цвет можно получить лишь применением внешнего светофильтра. Диапазон излучения светодиода во многом зависит от химического состава использованных полупроводников.

Светодиод состоит из нескольких частей:

  • анод, по которому подается положительная полуволна на кристалл;
  • катод, по которому подается отрицательная полуволна на кристалл;
  • отражатель;
  • кристалл полупроводника;
  • рассеиватель.

Эти элементы есть в любом светодиоде, вне зависимости от его модели.

Светодиод является низковольтным прибором. Для индикаторных видов напряжение питания должно составлять 2-4 В при токе до 50 мА. Диоды для освещения потребляют такое же напряжение, но их ток выше – достигает 1 Ампер. В модуле суммарное напряжение диодов оказывается равным 12 или 24 В.

Подключать светодиод нужно с соблюдением полярности, иначе он выйдет из строя.

Цвета светодиодов

Светодиоды бывают разных цветов. Получить нужный оттенок можно несколькими способами.

Первый – покрытие линзы люминофором. Таким способом можно получить практически любой цвет, но чаще всего эта технология используется для создания белых светодиодов.

RGB технология. Оттенок получается за счет применения в одном кристалле трех светодиодов красного, зеленого и синего цветов. Меняется интенсивность каждого из них, и получается нужное свечение.

Применение примесей и различных полупроводников. Подбираются материалы с нужной шириной запрещенной зоны, и из них делается кристалл светодиода.

Принцип работы светодиодов

Любой светодиод имеет p-n-переход. Свечение возникает при рекомбинации электронов и дырок в электронно-дырочном переходе. P-n переход создается при соединении двух полупроводников разного типа электропроводности. Материал n-типа легируется электронами, p-типа – дырками.

При подаче напряжения электроны и дырки в p-n-переходе начинают перемещаться и занимать места. Когда носители заряда подходят к электронно-дырочному переходу, электроны помещаются в материал p-типа. В результате перехода электронов с одного энергетического уровня на другой выделяются фотоны.

Не всякий p-n переход может излучать свет. Для пропускания света нужно соблюсти два условия:

  • ширина запрещенной зоны должна быть близка к энергии кванта света;
  • полупроводниковый кристалл должен иметь минимум дефектов.

Реализовать подобное в структуре с одним p-n-переходом не получится. По этой причине создаются многослойные структуры из нескольких полупроводников, которые называются гетероструктурами.

Для создания светодиодов используются прямозонные проводники с разрешенным прямым оптическим переходом зона-зона. Наиболее распространенные материалы группы А3В5 (арсенид галлия, фосфид индия), А2В4 (теллурид кадмия, селенид цинка).

Цвет светоизлучающего диода зависит от ширины запрещенной зоны, в которой происходит рекомбинация электронов и дырок. Чем больше ширина запрещенной зоны и выше энергия квантов, тем ближе к синему излучаемый свет. Путем изменения состава можно добиться свечения в широком оптическом диапазоне – от ультрафиолета до среднего инфракрасного излучения.

Светодиоды инфракрасного, красного и желтого цветов изготавливаются на основе фосфида галлия, зеленый, синий и фиолетовый – на основе нитридов галлия.

Виды светодиодов, классификация

По предназначению выделяют индикаторные и осветительные светодиоды. Первые используются для стилизации, декоративной подсветки – например, украшение зданий, рекламные баннеры, гирлянды. Осветительные приборы используются для создания яркого освещения в помещении.

По типу исполнения выделяют:

    Dip светодиоды. Они представляют собой кристаллы, заключенные в цилиндрическую линзу. Относятся к индикаторным светодиодам. Существуют монохромные и многоцветные устройства. Используются редко из-за своих недостатков: большой размер, малый угол свечения (до 120 градусов), падение яркости излучения при долгом функционировании на 70%, слабый поток света. Dip светодиоды

  • Spider led. Такие светодиоды похожи на предыдущие, но имеют 4 выхода. В таких диодах оптимизирован теплоотвод, повышается надежность компонентов. Активно используются в автомобильной технике.
    • Smd – светодиоды для поверхностного монтажа. Могут относиться как к индикаторным, так и к осветительным светодиодам. Smd

    • Cob (Chip-On-Board) – кристалл установлен непосредственно на плате. К преимуществам такого решения относятся защита от окисления, малые габариты, эффективный отвод тепла и равномерное освещение по всей площади. Светодиоды такой марки являются самыми инновационными. Используются для освещения. На одной подложке может быть установлено более 9 светодиодов. Сверху светодиодная матрица покрывается люминофором. Активно используются в автомобильной индустрии для создания фар и поворотников, при разработке телевизоров и экранов компьютеров. Cob
    • Волоконные – разработка 2015 года. Могут использоваться в производстве одежды. Волоконные
    • Filament также является инновационным продуктом. Отличаются высокой энергоэффективностью. Используются для создания осветительных ламп. Важное преимущество – возможность осуществления монтажа напрямую на подложку из стекла. Благодаря такому нанесению есть возможность распространения света на 360 градусов. Конструкция состоит из сапфирового стекла с диаметром до 1,5 мм и специально выращенных кристаллов, которые соединены последовательно. Число кристаллов обычно ограничивается 28 штуками. Светодиоды помещаются в колбу, которая покрыта люминофором. Иногда филаментные светодиоды могут относить к классу COB изделий. Filament

    • Oled. Органические тонкопленочные светодиоды. Используются для построения органических дисплеев. Состоят из анода, подложки из фольги или стекла, катода, полимерной прослойки, токопроводящего слоя из органических материалов. К преимуществам относятся малые габариты, равномерное освещение по всей площади, широкий угол свечения, низкая стоимость, длительный срок службы, низкое потребление электроэнергии. Oled
    • В отдельную группу выделяются светодиоды, излучающие в ультрафиолетовом и инфракрасном диапазонах. Они могут быть с выводами, так и в виде smd исполнения. Используются в пультах дистанционного управления, бактерицидных и кварцевых лампах, стерилизаторах для аквариумов.

    Светодиоды могут быть:

    • мигающими – используются для привлечения внимания;
    • многоцветными мигающими;
    • трехцветными – в одном корпусе есть несколько несвязанных между собой кристаллов, которые работают как по отдельности, так и все вместе;
    • RGB;
    • монохромными.

    Светодиоды классифицируются по цветовой гамме. Для максимально точной идентификации цвета в документации прибора указывается его длина волны излучения.

    Белые светодиоды классифицируются по цветовой температуре. Они бывают теплых оттенков (2700 К), нейтральных (4200 К) и холодных (6000 К).

    По мощности выделяют светодиоды, потребляющие единицы мВт до десятков Вт. Напрямую от мощности зависит сила света.

    Полярность светодиодов

    При неправильном включении светодиод может сломаться. Поэтому важно уметь определять полярность источника света. Полярность – это способность пропускать электрический ток в одном направлении.

    Полярность моно определить несколькими способами:

    • Визуально. Это самый простой способ. Для нахождения плюса и минуса у цилиндрического диода со стеклянной колбой нужно посмотреть внутрь. Площадь катода будет больше, чем площадь анода. Если посмотреть внутрь не получится, полярность определяется по контактам – длинная ножка соответствует положительному электроду. Светодиоды типа SMD имеют метки, указывающие на полярность. Они называются скосом или ключом, который направлен на отрицательный электрод. На маленькие smd наносятся пиктограммы в виде треугольника, буквы Т или П. Угол или выступ указывают на направление тока – значит, этот вывод является минусом. Также некоторые светодиоды могут иметь метку, которая указывает на полярность. Это может быть точка, кольцевая полоска.
    • При помощи подключения питания. Путем подачи малого напряжения можно проверить полярность светодиода. Для этого нужен источник тока (батарейка, аккумулятор), к контактом которого прикладывается светодиод, и токоограничивающий резистор, через который происходит подключение. Напряжение нужно повышать, и светодиод должен загореться при правильном включении.
    • При помощи тестеров. Мультиметр позволяет проверить полярность тремя способами. Первый – в положении проверка сопротивления. Когда красный щуп касается анода, а черный катода, на дисплее должно загореться число , отличное от 1. В ином случае на экране будет светиться цифра 1. Второй способ – в положении прозвонка. Когда красный щуп коснется анода, светодиод загорится. В ином случае он не отреагирует. Третий способ – путем установки светодиода в гнездо для транзистора. Если в отверстие С (коллектор) будет помещен катод – светодиод загорится.
    • По технической документации. Каждый светодиод имеет свою маркировку, по которой можно найти информацию о компоненте. Там же будет указана полярность электродов.

    Выбор способа определения полярности зависит от ситуации и наличия у пользователя нужного инструмента.

    Расчет сопротивления для светодиода

    Диод имеет малое внутреннее сопротивление. При подключении его напрямую к блоку питания, элемент перегорит. Чтобы этого не случилось, светодиод подключается к цепи через токоограничивающий резистор. Расчет производится по закону Ома: R=(U-Uled)/I, где R – сопротивление токоограничивающего резистора, U – питание источника; Uled – паспортное значение напряжения для светодиода, I – сила тока. По полученному значению и подбирается мощность резистора.

    Важно правильно рассчитать напряжение. Оно зависит от схемы подключения элементов.

    Можно не производить расчет сопротивления, если использовать в цепи мощный переменный или подстроечный резистор. Токоограничивающие резисторы существуют разного класса точности. Есть изделия на 10%, 5% и 1 % – это значит, что погрешность варьируется в указанном диапазоне.

    Выбирая токоограничивающий резистор, нужно обратить внимание и на его мощность. почти всегда, если при малом рассеивании тепла устройство будет перегреваться и выйдет из строя. Это приведет к разрыву электрической цепи.

    Когда нужно использовать токоограничивающий резистор:

    • когда вопрос эффективности схемы не является основным – например, индикация;
    • лабораторные исследования.

    В остальных случаях лучше подключать светодиоды через стабилизатор – драйвер, что особенно это актуально в светодиодных лампах.

    Онлайн – сервисы и калькуляторы для расчета резистора:

    Ссылка на основную публикацию